
PICACHV: Formally Verified Data Use Policy Enforcement for Secure Data
Analytics

Haobin Hiroki Chen1, Hongbo Chen1, Mingshen Sun2, Chenghong Wang1, and XiaoFeng Wang1

1Indiana University Bloomington
2Independent Researcher

Abstract
Ensuring the proper use of sensitive data in analytics under
complex privacy policies is an increasingly critical challenge.
Many existing approaches lack portability, verifiability, and
scalability across diverse data processing frameworks. We in-
troduce PICACHV, a novel security monitor that automatically
enforces data use policies. It works on relational algebra as an
abstraction for program semantics, enabling policy enforce-
ment on query plans generated by programs during execution.
This approach simplifies analysis across diverse analytical
operations and supports various front-end query languages.
By formalizing both data use policies and relational algebra
semantics in Coq, we prove that PICACHV correctly enforces
policies. PICACHV also leverages Trusted Execution Environ-
ments (TEEs) to enhance trust in runtime, providing provable
policy compliance to stakeholders that the analytical tasks
comply with their data use policies. We integrated PICACHV
into Polars, a state-of-the-art data analytics framework, and
evaluate its performance using the TPC-H benchmark. We
also apply our approach to real-world use cases. Our work
demonstrates the practical application of formal methods in
securing data analytics, addressing key challenges.

1 Introduction

The rapid advancement of computational devices and the
rise of big data present unparalleled opportunities to ac-
celerate scientific progress and drive innovation through
data-driven decision-making. While these opportunities are
ground-breaking, they are accompanied by a critical chal-
lenge: ensuring proper data use in compliance with complex
privacy policies. Real-world data analytics often involves
complex privacy policies. For instance, researchers using
NIH’s All of Us [44] platform must comply with multiple
privacy regulations, such as the HIPAA Safe Harbor Rule [43]
and the platform’s own policies mandating patient data aggre-
gation into groups of 20 or more.

Unfortunately, enforcing these policies poses a great chal-
lenge. Manual checks are impractical due to the complexity

of analytical tasks and the high cost of human effort. This
leads to reliance on machine-based solutions, which often fail
to address these challenges comprehensively. For example,
database access control mechanisms [41, 42, 48, 57], focus
solely on restricting access to data but do not ensure that
already authorized personnel comply with proper data use
policies. Moreover, they lack verifiable guarantees to data
holders as they frequently rely on very ad hoc heuristics. Pro-
gram analysis [13, 17, 27, 34, 47, 51–53] mostly still focus
on access control policies. The few that can be or have been
extended to data use policy enforcement often restrict pro-
grammers to a specific language (e.g., PRIVGUARD [51] only
supports Python), which is less desirable.

Addressing this problem remains non-trivial. One major
challenge is the diversity of front-end programming languages.
In data analytics, researchers and data scientists use a wide
range of languages and rely heavily on third-party libraries.
Some frameworks like Apache Spark [55] supports both
Dataframe-like APIs and SQL. This diversity in frontend pro-
gramming languages and tools creates significant challenges
for implementing consistent and universal policy enforcement
mechanisms. Each language has its own syntax, semantics,
and idiosyncrasies. This variability complicates the process
of policy enforcement, as a mechanism tailored for one lan-
guage may not be applicable to others. Moreover, complex
third-party libraries often obscure underlying data operations,
making policy enforcement more challenging. Traditional
approaches that focus on language-specific static or dynamic
analysis techniques [17, 27, 34, 52, 53] struggle to provide a
comprehensive solution across this diverse landscape.

Enforcing data use policies essentially relies on informa-
tion flow control (IFC) [32,48], with the underexplored aspect
of declassification playing a key role. Existing works on de-
classification [19, 35, 46] primarily focus on language-level
approaches and provide only general methodologies for spec-
ifying policies, but they do not address the specific require-
ments of our use case. Here, several key challenges emerge: 1)
accurately describing data sensitivity levels and downgrading
operations for data analytics, 2) proposing new semantics for

the relational algebra that interplays with the declassification
requirements, and then 3) defining and proving a rigorous
semantics-based security model [45] for policy enforcement.
Addressing these design complexities requires formal verifica-
tion to provide mathematically rigorous security guarantees,
which are critical for highly sensitive workloads.

Beyond security guarantees, effective policy enforcement
must also account for performance trade-offs and system scal-
ability. For analytical queries, performance (or total cost of
ownership (TCO)) is always a critical concern in policy en-
forcement, with both static and dynamic approaches facing
unique challenges. While static analysis minimizes runtime
overhead, it introduces significant development costs [12]
and lacks the precision (i.e., high false positive rate) achiev-
able with dynamic analysis. Dynamic analysis, on the other
hand, grapples with the significant runtime complexity of
tracking tags across data, and the tags quickly become cum-
bersome and unmanageable as the system scales up. These
performance considerations necessitate careful balancing of
enforcement strategies.

This work. We tackle these challenges from a different per-
spective: relational algebra. Data analysis programs, regard-
less of their implementation language or framework, can be
logically described using relational algebra or similar inter-
mediate representations. Such translations have already been
well-studied [24, 28, 50], there are even extensions for other
applications like ML inferences [30]. Hence, we assume the
existence of such techniques and focus our research on design-
ing enforcement mechanisms over relational algebra (often
in the form of query plans). We therefore describe all data
manipulations in a unified query plan, overcoming the limi-
tations imposed by specific languages or frameworks as we
obtain the semantics of the program via relational algebra.
Furthermore, this insight aligns seamlessly with current policy
requirements, which specify necessary operations before re-
lease, as these policies inherently describe data manipulation
requirements that can be integrated into relational algebra.

While policy enforcement at this level seems straightfor-
ward, there is a question left unsolved: How should we struc-
ture the security lattice and declassification rules to express
diverse data use policies? Existing works on declassification
policies [12, 19, 35] provide only high-level methodologies
and are not directly applicable to our scenarios. Fortunately,
data use policies inherently imply sensitivity ordering through
manipulation requirements. For example, privacy policies like
redaction or aggregation naturally reduce data sensitivity to
some extent, giving us an intuition for structuring the se-
curity lattice in alignment with these data operations. This
work presents a feasible way for specifying data use policies
based on this key observation. On top of that, we propose
in this paper a new operational semantics for relational al-
gebra to support policy enforcement. To ensure correctness,
we rigorously verify these semantics using Coq, providing
mathematically sound guarantees for policy compliance.

We implement a prototype runtime security monitor, called
PICACHV. Informally, PICACHV functions as a verified mid-
dleware that intercepts query plans and monitors query exe-
cution in parallel to detect policy violations. Since PICACHV
focuses on the relational data, it allows for sophisticated op-
timization techniques such as parallelization. Furthermore,
PICACHV integrates with TEEs to provide strong proofs to
data owners that data is used appropriately during analytical
tasks in untrusted cloud environments. TEEs provide crypto-
graphic reports via remote attestation, ensuring the authen-
ticity of the monitor, the integrity of operations, and proving
policy compliance of queries to the data owner. Nevertheless,
our technique can be applied to trusted environments like
on-premise databases.

We summarize our contributions as follows.

• We formalize relational operators with declassification
semantics to avoid the complexity of language-based
semantics. We formalize the semantics and also provide
the mechanized proof of soundness in Coq.

• We design PICACHV, a dynamic security monitor that
transparently enforces these data use policies when exe-
cuting analytical tasks. Our framework also incorporates
multiple optimizations, and experiments show that only
small runtime overhead was incurred.

• We ported PICACHV to a well-established data analysis
framework called Polars and performed evaluation to
showcase the adaptability of PICACHV in diverse data
processing environments.

Roadmap. This paper is structured as follows: In Section 2,
we review related work. Section 3 introduces essential back-
ground and preliminary knowledge to provide readers with
the necessary foundation. In Section 4, we formalize the data
use policies central to our approach. Section 5 details the
operational semantics of our policy-integrated relational al-
gebra. Section 6 outlines the implementation of PICACHV.
Section 7 evaluates PICACHV, demonstrating its effectiveness
and efficiency across various scenarios. Finally, Section 8 dis-
cusses the scalability, performance trade-offs, and potential
limitations of our approach.

2 Related Work

Policy enforcement in data analytics. Several frameworks
have been developed to analyze application code that interacts
with sensitive data. Language-based information flow control
mechanisms, such as STORM [34], RULEKEEPER [23], UR-
FLOW [17], SELINQ [47], SWIFT [18], PRIVGUARD [51]
and JEEVES [53] renforce policies by rejecting non-compliant
code at compile time. Some solutions, however, require man-
ual code annotations, which can be labor-intensive and error-
prone. Moreover, these frameworks struggle to enforce fine-
grained policies effectively compared to PICACHV. Query

rewriting approaches, including QAPLA [42], JACQUELINE
[52], and ESTRELA [13], aim to ensure policy compliance
by modifying query syntax. However, these methods operate
at the syntax level, often sacrificing the precision required
for execution-time analysis. The most similar work to PI-
CACHV is LAPUTA [31], which enforces table-level policies
for Apache SparkQL using regular expression matching on
physical query plans. However, like many earlier efforts, LA-
PUTA relies heavily on heuristics and lacks verifiable guaran-
tees, limiting its applicability for sensitive workloads. It also
lacks fine-grained policy enforcement.
Formal methods. Formal methods are essential for ensuring
the correctness of critical systems by providing mathemati-
cally rigorous guarantees and eliminating reliance on ad hoc
testing. Large-scale systems such as operating system kernels
and virtual machine managers have successfully adopted for-
mal verification techniques [29,36,37], demonstrating their in-
dustrial feasibility. Applying formal methods in securing data
analytics remains a rare practice. Existing research has for-
malized and verified the correctness of database systems [39]
and SQL semantics [26], but no work has yet addressed the
integration of privacy policies into relational algebra.
TEEs for secure data computation. Confidential Comput-
ing enables secure data processing, unlocking new computing
scenarios and fostering innovation across industries where
privacy concerns previously posed barriers. Under the hood,
TEEs protect unauthorized parties from seeing and modifying
the data and code inside TEEs based on sophisticated hard-
ware protection mechanisms. Many TEEs have been made
available to the public, such as enclave-based Intel SGX [20],
and VM-based Intel TDX [16], AMD SEV SNP [49]. There
also have been many works that leverage TEEs to build se-
cure data sharing frameworks (e.g., [38]). Industries are ac-
tively exploring utilizing TEE-based solutions for secure data
computation. For example, Google Research has proposed
the Confidential Federated Computations using TEE-based
ledger systems [22].

3 Preliminary

Threat Model. PICACHV’s primary goal is to offer verifiable
proofs to data owners whose data is analyzed by any individ-
ual or group on the cloud inside TEEs that their data can be
used only in accordance with the data use policies they speci-
fied. We thus assume that the TEE environment is completely
safe. Attacks such as hardware side-channels, software vul-
nerabilities, or other exploits targeting TEEs are outside the
scope of this paper and assumed to be mitigated by existing
approaches (e.g., [58]). The primary concerns are uninten-
tional or intentional policy violations during data analytics.
These may include improper data aggregation, inadequate
anonymization, etc.
Relational Algebra. Relational algebra, a cornerstone of

database theory, provides a set of operators for manipulat-
ing relational data. Relational data is organized into tables,
called relations, where each row represents a tuple (a single
data entry) and each column represents an attribute (a prop-
erty of the data). Relations are defined with a schema that
specifies the attributes and their domains, ensuring consis-
tency and structure in the data. It forms the theoretical basis
for relational database management systems and SQL. The
fundamental operators include selection (σ) for filtering rows
based on a condition, projection (π) for selecting specific
columns, union (∪) for combining tuples from two relations,
set difference (−) for returning tuples in one relation but not
another, Cartesian product (×) for creating all possible tuple
combinations from two relations, and the join (▷◁) for concate-
nating tuples. By combining these operators, complex queries
can be constructed to extract and transform data efficiently.
Relational algebra’s mathematical foundation ensures query
precision and optimizability, making it crucial for database
design and management, and beyond.

4 Formalizing Data Use Policies

In this section, we present the formalization of privacy poli-
cies so that they can accommodate policies written in human
natural languages. We first define a security lattice that pro-
vides a formal framework for expressing these policies. Then
we introduce the integration of data use policies with declas-
sification requirements.

4.1 Sensitivity Labels
In reality, protecting data privacy often involves hierarchical
sensitivity levels. For example, a user’s full address is more
sensitive than their zip code, and their zip code is more sensi-
tive than their county. Similarly, individual purchase records
are more sensitive than aggregated sales data. As data un-
dergoes transformations like aggregation or anonymization,
its sensitivity typically decreases. We first define sensitivity
levels as labels in Definition 4.1.

Definition 4.1 (Security lattice). The security labels for PI-
CACHV are defined as L = {L,N,A,T,H} such that L ⊑ N ⊑
A ⊑ T ⊑ H. The security lattice is defined as ⟨ L ,⊑,⊔,⊓ ⟩,
satisfying:

• L ⊑ ℓ,∀ℓ ∈ L .

• ℓ⊑ H,∀ℓ ∈ L .

• ℓ1 ⊑ ℓ2 ⇐⇒ ℓ1 ⊔ ℓ2 = ℓ2.

• ℓ1 ⊑ ℓ2 ⇐⇒ ℓ1 ⊓ ℓ2 = ℓ1.

Note that ⊑ is antisymmetric, meaning that ℓ1 = ℓ2 if and
only if ℓ1 ⊑ ℓ2 ∧ ℓ2 ⊑ ℓ1.

The lattice in Definition 4.1 includes T for data transfor-
mation requirements, A for data aggregation requirements,

and N for noise addition requirements. This security lattice is
motivated by the varying sensitivity levels in data governed by
privacy policies. Different data elements and their derivatives
possess distinct levels of sensitivity. Unlike other works with
only two sensitivity levels (high H and low L) [15,46,56], our
lattice captures nuanced requirements for data use policies.
The real-world examples will be detailed later to strengthen
our design. We first present the security lattice as follows.
These labels themselves solely, however, cannot represent the
policy requirements by data owners. We introduce policies in
the following section.

4.2 Policies
In our framework, each data element (specifically, individual
cells within each relation) is associated with a distinct declas-
sification policy. This policy specifies sanitization procedures
that ensure compliance with the required privacy policies.
Upon satisfying all stipulated conditions, the data becomes
eligible for disclosure. These declassification policies are fun-
damentally built upon the previously established base security
labels, which collectively form a lattice L .

We have adapted and refined the definition presented in [19]
to formalize this concept to align with our specific scenario.
The formal definition is as follows:

p ::= L | ℓO ⇝ p, (1)

where the lowest label L in the lattice indicates that all policies
are enforced, allowing the data to be freely disclosed. The
expression ℓO ⇝ p signifies that for a given security label
ℓ ∈ L , the data must be used following the security label ℓ,
and only operations defined in O can downgrade the data to
the next policy p. A subtle consequence here is that operations
will now have their own sensitivity levels. For example, a
summation operation should have A because it is doing an
aggregation.

We assume that we can always define a subset relation ⊆
over O, which can be either a vanilla set, or some complex
structures like aggregation with group size requirements. For
example, for aggregates, we can define O | n where n denotes
the minimum required group size, and O denotes the set of
allowed aggregate operations. Additionally, given that the
security lattice is now refined with operations, we present the
refined lattice “flows to” relation in Figure 1. This relation is
useful for composing policies, which will be detailed later in
this section.

LT
ℓ1 ⊑ ℓ2 ℓ2 ̸⊑ ℓ1

ℓO1
1 ⊑∗ ℓO2

2

LT2
ℓ1 = ℓ2 O1 ⊆ O2

ℓO1
1 ⊑∗ ℓO2

2

Figure 1: The refined lattice flows-to rules ℓO1
1 ⊑∗ ℓO2

2 .

We present the declassification rules in Figure 2, modeled

as a relation p ↪
op,ℓ−−→ p′, where op represents the operation

applied to the policy, and ℓ denotes its sensitivity level. When
an operation is applied to a policy, two cases arise: a) Oper-
ation sensitivity level is lower than the policy’s sensitivity
level: The absence of a corresponding reduction rule in Fig-
ure 2 indicates an ill-formed case, resulting in a runtime error.
b) Operation sensitivity level is greater than or equal to the
policy’s sensitivity level: If the operation can successfully
downgrade the policy, the policy is downgraded, as defined by
the DLOWER rule. Otherwise, the policy remains unchanged,
as the required operation has not yet been applied, following
the DPRESERVE rule.

DEMPTY

L ↪
op,ℓ−−→ L

DLOWER
p = ℓO ⇝ p′ op ∈ O

p ↪
op,ℓ−−→ p′

DPRESERVE
p = ℓ′O ⇝ p′ ℓ′ ⊑ ℓ op /∈ O

p ↪
op,ℓ−−→ p

Figure 2: The declassification rules p ↪
op,ℓ−−→ p′ for policy p.

Well-formed policy. Specifically, because our policy focuses
on declassification, policies must be ordered (in the sense
of⇝) in the descending way. This reflects a practical basis:
policies often specify the operations required to make data
disclosable rather than to restrict it further. As shown in Fig-
ure 3, a policy p is well-formed if it consists of a chain where
labels flow from higher to lower sensitivity levels, which can
be verified through pattern matching on the refined “flows to”
relation (Figure 1).

wf(L) wf(ℓO ⇝ L)

wf(ℓO2
2 ⇝ p)

ℓO2
2 ⊑∗ ℓO1

1

wf(ℓO1
1 ⇝ ℓO2

2 ⇝ p)

Figure 3: The well-formedness property of policy p.

Policy Composition. Policy composition is essential for sce-
narios where data from multiple sources converge. For in-
stance, consider a medical dataset combining patient data
from hospitals located in different states, such as California
and Texas, each governed by its distinct data use policies. In
cases where researchers aim to analyze the socioeconomic
factors affecting patient health across states, they must adhere
to the policies of both datasets. This requires a mechanism for
policy composition. Figure 4 illustrates rules for a commuta-
tive composition process, ensuring policies are consistently

merged. These rules ensure that joint analysis adheres to all
policy requirements from both parties. Informally, policy join
involves constructing a chain by inserting the appropriate pol-
icy label into the correct position based on the refined “flows
to” relation. For policies sharing the same sensitivity levels
in the MERGE case, we apply the intersection operation ∩ to
obtain the joined label ℓO3 .

JBOTL L⊎ p = p
JBOTR

p⊎L = p

LEFT
ℓO2

2 ⊑∗ ℓO1
1 p1 ⊎ (ℓO2

2 ⇝ p2) = p3

ℓO1
1 ⇝ p1 ⊎ ℓO2

2 ⇝ p2 = ℓO1
1 ⇝ p3

RIGHT
ℓO1

1 ⊑∗ ℓO2
2 (ℓO1

1 ⇝ p1)⊎ p2 = p3

ℓO1
1 ⇝ p1 ⊎ ℓ2⇝ p2 = ℓO2

2 ⇝ p3

MERGE
O1 ∩O2 = O3 p1 ⊎ p2 = p3

ℓO1 ⇝ p1 ⊎ ℓO2 ⇝ p2 = ℓO3 ⇝ p3

Figure 4: The composition rules for policy p.

4.3 Policy Expressiveness

We argue that the declassification policies presented in this
paper provide a practical abstraction, grounded in real-world
scenarios. We provide three different privacy policy use cases
to strengthen our argument.

Scenario #1: Medical Data Analysis. Medical data analysis
serves as a concrete application of our policy design. Data
collected by hospitals and medical research institutions is
inherently sensitive, necessitating strict privacy regulations.
To illustrate the applicability of our policies, we examined two
examples: HIPAA Safe Harbor [43], a foundational standard
for medical privacy, and the All-of-Us [44] project initiated by
the U.S. National Institutes of Health (NIH) that extends the
HIPPA boundary. For instance, under the HIPAA Safe Harbor
framework, researchers must redact the last three digits of
a zip code. This policy can be expressed as T{redact(3)} ⇝
L. The All-of-Us project mandates that aggregation must be
performed on groups of at least 20 individuals, represented as
A{sum,avg,max,min...}|20⇝ L.

Scenario #2: The U.S. Census Bureau. The U.S. Census
Bureau’s 2020 disclosure avoidance guidance [14] employs
differential privacy [21] to add statistical noise to census
data, preventing the identification of individuals in small
demographic groups. The Census Bureau assigns varying
privacy budgets ε to different individuals and census blocks.
PICACHV’s policy framework captures these requirements by
associating N∆⇝ L with the corresponding data objects. In
this case, please note that PICACHV leaves the task of spec-
ifying the noise to policymakers and does not dictate what

noise should be added to the corresponding data. Instead, it
only ensures that a specific noise ∆ is applied to the data.

Scenario #3: Policy for businesses. An additional example
illustrates how fine-grained policies can be applied in busi-
ness contexts. Google provides users with extensive privacy
rights, allowing them to control what information is collected
and for what purposes1. For example, consider a table where
Google stores user demographic information. If users opt out
of ad recommendations based on their age, a cell-level policy
H /0⇝ L can be specific on the corresponding individuals of
the attribute age, indicating that their ages can never be used.
Users can also specify other requirements like redaction, gen-
eralization, etc. that can be further applied on the base policy.
If Google’s basic policy requires age data to be aggregated
for groups of at least 100 people, policies can be “overlaid”
to construct T{redact}⇝ A{sum,avg,···}|100⇝ L.

5 Formalizing PICACHV

This section formalizes the operational semantics of relational
algebra (RAP), which supports PICACHV’s function as a
runtime security monitor. The full syntax of relational algebra
is defined in Figure 5. We first define an extended relational
data model to support policy-associated data.

Data Model. We begin by formalizing the underlying data
model. The schema, s is a list of primitive types, τ. A tuple t
is a dependent type based on the schema, with each element
t referred to as a cell [39]. A relation R is a collection of
tuples. We denote by R[i] the i-th tuple in R, and slicing R
along indices n as R ↾n T . Each cell within a tuple is assigned
a unique identifier (id) to enable policy lookup in the given
environment detailed later. We visualize this in Figure 6.

Expressions. In our model, expressions take five forms. Two
atomic expressions include the primitive value pv, used as
constants, and the column identifier col(id), for selecting val-
ues from a given column. Complex expressions include unary
expressions ⊗e, binary expressions e1 ⊕ e2, and aggregates
A(e). Expressions are used as: 1) predicates in select for
tuple filtering (ϕ) and aggregate (g) for group filtering, or 2)
actual values evaluated as results.

Relational algebra. As illustrated in Figure 5, a query q in-
cludes a special operator for data retrieval and five fundamen-
tal relational operators. A relation R indexed by its identifier
id ∈N is denoted as R(id). The union operator q1∪q2 merges
two subqueries q1 and q2 that share the same schema. The
join operator q1 ▷◁n1,n2 q2 combines results from two sub-
queries q1 and q2 based on columns specified by two lists of
indices n1 and n2. The projection operator πe(q) evaluates
expressions e ∈ e on every row in the result of the query q.
The selection operator σϕ(q) filters rows of q that satisfies the

1https://safety.google/intl/en_us/privacy/ads-and-data/
#controls

https://safety.google/intl/en_us/privacy/ads-and-data/#controls
https://safety.google/intl/en_us/privacy/ads-and-data/#controls

Data model

Type: τ ::= int | str | bool |
Schema: s ::= τ

Tuple: t ::=⊥ | ⟨ c, t ⟩
Cell: c ::= ⟨ pv, id ⟩
Cell Identifier: id ∈ N
Tagged Value: v ::= c | c

Relational algebra

Query: q ::= R(id) | q1 ∪q2 | πe(q)

| q1 ▷◁n1,n2 q2 | σϕ(q)

| γe|g|ϕ(q)

Expression: e,g,ϕ ::= pv | col(id) | ⊗e

| e1 ⊕ e2 | A(e)

Primitive Value: pv ∈ str | bool | nums
Unary: ⊗ ::= ¬ | − |+ | ...
Binary: ⊕ ::=≥|≤|=|̸= ...

Aggregate: A ::= sum | max | min |...
Trace: tr ::= ⟨ id, tt ⟩
Trace type: tt ::= TrNone p

| TrSingle tt,op, p

| TrMulti tt,op, p

Policy: p

Operator: op ::=⊕ | ⊗ | A
Group: G ::= ⟨ t,n ⟩ ,n ∈ N

Data store: Σ ::= ⟨ id,⟨ R,Γ ⟩ ⟩

Policy store: Γ ::= ⟨ id, p ⟩

Figure 5: The syntax for RAP.

predicate ϕ. The aggregate operator γe|g|ϕ(q) is slightly more
complex. It computes aggregates e, groups rows by g, and fil-
ters groups satisfying ϕ (i.e., the having clause). Additionally,
it specifies lists of aggregate expressions e. Here, the group
information G includes the active tuple t, which represents the
grouped keys (a list of column indices used for grouping), and
the group-by indices n corresponding to the tuples in R within
the current group. For example, consider again the relation
shown in Figure 6, where the grouping is performed on the τ1
column. Hence, the grouping key is τ1, and there will be two
groups whose representative values are v1 and v2, respectively.
In this case, the first group G1 would be ⟨ ⟨ v1,⊥ ⟩ ,{0,1} ⟩,
and the second one G2 would be ⟨ ⟨ v2,⊥ ⟩ ,{2} ⟩, assuming
that the index of each row starts at 0.

τ1 τ2 τ3

(v1, id1) (v3, id2) (v3, id3)

(v1, id4) (v5, id5) (v6, id6)

(v2, id7) (v8, id8) (v9, id9)

tuple t

schema s

relation R

Figure 6: The relational model.

Program trace. The program trace tr serves two purposes
when performing expression evaluations which be introduced
next. First, it ensures that all data undergoes the appropriate
operations before being released by recording the history of
operations (op) performed on each cell. Second, it maintains

the current policy p associated with the cell being evaluated.
Accordingly, tr is represented as a list of tuples containing cell
identifiers and their corresponding trace types t. The intuition
behind the definition of t is straightforward: within the five
relational operators, a cell may undergo one of two types of
transformations. These transformations involve either a single
data source, as in the case of TrSingle caused by projects,
or multiple data sources, as in TrMulti, typically resulting
from operations like aggregates or joins. For cells that have
not undergone any operations, their trace type is represented
as TrNone p, with p as policies associated with the cell.

5.1 Formal Semantics

This section introduces the core reduction rules for RAP, start-
ing with the rules for evaluating expressions in relational
algebra, followed by the rules for relational operators.

5.1.1 Expressions

Expressions form the foundation of relational algebra. Ex-
pression evaluation is defined as the relation2:

⟨ tr,T ⟩ e−→
〈

tr′,v
〉
,

where a trace tr and a tuple context T ::= t | t (represents ei-
ther a single tuple t or a list of tuples in an aggregate context)
are inputs, and the evaluation of the expression e produces a

2In Coq, an additional argument for the maximum allowed steps must
be introduced to satisfy the termination checker.

COLUMN
T = t n < |t|

⟨ tr,T ⟩ col(n)−−−→ ⟨ tr, t[n] ⟩
COLUMNAGG

T = t ∀i ∈ |t|=⇒ n < |ti|

⟨ tr,T ⟩ col(n)−−−→ ⟨ tr,
⋃

i ti[n] ⟩

AGGREGATE

⟨ tr,T ⟩ e−→ ⟨ tr′′,v ⟩ v = ⟨ pv, id ⟩
⟨ tr′′, t ⟩ agg,v−−−→ ⟨ tr′,v′ ⟩

⟨ tr,T ⟩ agg(e)−−−→ ⟨ tr′,v′ ⟩

UNARY

⟨ tr,T ⟩ e−→⟨ tr′′,v ⟩ v = ⟨ pv, id ⟩
⟨ tr′′,T ⟩ ⊗,v−−→ ⟨ tr′,v′ ⟩

⟨ tr,T ⟩ ⊗ e−−→ ⟨ tr′,v′ ⟩
UNARYAGG

⟨ tr,T ⟩ e−→ ⟨ tr′′,v ⟩ v = ⟨ pv, id ⟩
∀i ∈ |v|=⇒

(
⟨ tr′′,T ⟩ ⊗,v−−→ ⟨ tr′i,v

′
i ⟩
)

⟨ tr,T ⟩ ⊗ e−−→ ⟨
⋃

i tr
′
i,

⋃
i v′i ⟩

BINARY

⟨ tr,T ⟩ e1−→ ⟨ tr1,v1 ⟩ ⟨ tr,T ⟩ e2−→ ⟨ tr2,v2 ⟩
v1 = ⟨ pv1, id1 ⟩ v2 = ⟨ pv2, id2 ⟩
⟨ tr1 ∪ tr2,T ⟩ ⊕,v1::v2::nil−−−−−−−→ ⟨ tr′,v′ ⟩

⟨ tr,T ⟩ e1⊕e2−−−→ ⟨ tr′,v′ ⟩
BINARYAGG

⟨ tr,T ⟩ e1−→⟨ tr1,v1 ⟩ ⟨ tr,T ⟩ e2−→ ⟨ tr2,v2 ⟩
v1 = ⟨ pv1, id1 ⟩ v2 = ⟨ pv2, id2 ⟩ |v1|= |v2|
∀i ∈ |v1|=⇒

(
⟨ tr1 ∪ tr2,T ⟩ e1⊕e2−−−→ ⟨ tri,v′i ⟩

)
⟨ tr,T ⟩ e1⊕e2−−−→ ⟨

⋃
i tr

′
i,
⋃

i v′i ⟩

Figure 7: Main expression evaluation rules for ⟨ tr,T ⟩ e−→ ⟨ tr′,v ⟩ .

value v along with an updated trace tr′. To highlight expres-
sion evaluation that involves policy transformation, we define
an auxiliary expression evaluation relation as follows.

⟨ tr,T ⟩ f ,v−→
〈

tr′,v′
〉
,

where f is the function being applied to tagged value v. We
present the main expression evaluation rules in Figure 7,
where we categorize expression evaluation based on the tuple
context T . The COLUMN rule is straightforward, as it simply
retrieves the value at the specified index n from the tuple t.
For UNARY and BINARY expressions, the rules invoke the
corresponding auxiliary evaluation functions. In the aggregate
context, the evaluation works similarly but applies the rules
iteratively to each element in v.

The auxiliary rules in Figure 8 are more interesting. The
FUNARY rule governs unary function application, where the
program trace tr must contain the policy p associated with
the tagged value v (which includes a unique identifier id). The
intended operation f is applied to p, transitioning the label
(highlighted) and producing an updated policy p′ (if possi-
ble as defined in the Figure 2). This change is reflected in the
updated program trace as tr[⟨ id, p ⟩ 7→ ⟨ id, p′ ⟩]. The func-
tion f is then interpreted as J f K and applied to the primitive
value pv carried by v, yielding J f K(pv). The FBINARY rule
follows a similar process but includes an additional constraint:
the second argument v2 must be clean, meaning its policy
must be L. The AGGREGATE rule is slightly more complex.
Before applying the operation, it ensures that all policies in
the list of primitive values are compatible with the aggregate

function. It then transitions the labels to obtain each updated
policy p′i. The final result is computed by folding over the
value list pvs, with the resulting policy label being the com-
position of all p′i. We use map to split v into two lists using
the pair projection functions fst and snd: one list for values,
pvs, and another for identifiers, ids. It has type:

map : (A → B)→ A → B,

which applies a function f : A → B on each element of the
list A, producing a list of results B. Next, the list of primitive
values and their identifiers is processed to compute a result
using the fold operation, which has the type:

fold : (B → A → B)→ B → A → B,

This operation takes a higher-order function f (which accu-
mulates elements of the list), an identity element B, a list of
elements A, and produces a final result B. Afterward, a new
identifier for the result is generated by the new_id function3.
Trusted Blackbox Functions. In the expression evaluation
rules defined in Figure 9, we treat functions as blackboxes [51]
for two primary reasons. First, no limitations are imposed
on function implementations, allowing library developers to
create functions or user-defined functions (UDFs) in any pro-
gramming language and style. This flexibility, however, com-
plicates policy enforcement, as it requires not only under-
standing the semantics of these functions but also supporting

3We assume that this function is like a UUID generator so we do not
need to worry about id conflicts.

v = ⟨ pv, id ⟩ ⟨ id, p ⟩ ∈ tr

p ↪
f ,T−−→ p′ tr′ = tr[⟨ id, p ⟩ 7→ ⟨ id, p′ ⟩]

⟨ tr,T ⟩ f ,v−−→ ⟨ tr′,⟨ J f K(pv), id ⟩ ⟩
(FUNARY)

⟨ id1, p ⟩ ∈ tr ⟨ id2,L ⟩ ∈ tr id = new_id(tr)
v = ⟨ pv1, id1 ⟩ :: ⟨ pv2, id2 ⟩ :: nil

p ↪
f (·,pv2),T−−−−−−→ p′ tr′ = tr[⟨ id, p ⟩ 7→ ⟨ id, p′ ⟩]

⟨ tr,T ⟩ f ,v−−→ ⟨ tr′,⟨ J f K(pv1, pv2), id ⟩ ⟩
(FBINARY)

v = ⟨ pv, id ⟩ pvs = map(fst,v) ids = map(snd,v)

∀i ∈ |P|=⇒ (⟨ idsi, pi ⟩ ∈ tr)∧
(

pi ↪
agg,A−−−→ p′i

)
tr′ =

〈
id′,

⊎
i p′i

〉
:: tr id′ = new_id(tr) P = {p1, · · ·}

⟨ tr,T ⟩ agg,v−−−→ ⟨ tr′,⟨ fold(JaggK , pvs), id′ ⟩ ⟩
(FAGG)

Figure 8: Auxiliary rules for ⟨ tr,T ⟩ f ,v−→ ⟨ tr′,v′ ⟩ that di-
rectly manipulates policy checks and transitions that are
highlighted .

a wide array of programming languages. Second, it is more
practical and secure to establish a barrier between third-party
code and PICACHV. This separation allows for better control
and monitoring of interactions between external functions
and the core system. We also believe that programmers can
provide vetted code for these functions.

5.1.2 Relational Operators

We now turn our attention to the reduction rules for the opera-
tors of our core calculus RAP, as illustrated in Figure 9. This
behavior is formalized using big-step operational semantics,
represented by the following judgment form:

Σ ⊢ q ⇓ ⟨ R, tr ⟩

This establishes a relation between the initial evaluation
context Σ,q, which consists of the data store and the query q,
and the resulting relation R along with the updated trace tr.

We present reduction rules for relational operators in Fig-
ure 7. The JOIN rule first evaluates its sub-queries, yielding
their results R1 and R2. It then iterates over the tuples in the
left relation, such that for each tuple t1 ∈ R1, it attempts to
concatenate t1 with all tuples t2 ∈ R2 from the right relation.
The JOINT rule, which is used by the JOIN rule, is particularly
noteworthy. This rule attempts to join a tuple t with a relation
R. Since a join operation requires specifying which columns
are used as keys, we use t ↾n ⟨ t1, t⋆1 ⟩ to denote splitting the

tuple t into two parts: t1, which contains the selected columns
(keys), and t⋆1 , which contains the remaining columns. The
JOINT rule then iterates over the tuples in the right relation
R. It ensures that all identifiers and policies of the tuple being
joined are present in the initial trace tr. During each iteration,
if the tuples t1 and t2 agree on the joined part (denoted as
t1

.
= t2), their policies p1 and p2 are composed as p1 ⊎ p2,

and the new policy is inserted into the updated trace tr′. The
UNION rule simply unions the result of the two sub-queries.

The base rule is presented in RELATION where we fetch
the policy from the policy store and transform it into a trace tr
consisting of TrNone. For SELECT, we iterate over each tuple
R[i] ∈ R obtained from the evaluated result of the subquery,
and we evaluate the predicate ϕ thereon. Since evaluating the
predicate does not involve any policy-related operations, we
disregard the program trace, using ⋆ as a special placeholder
to indicate that it is irrelevant in this context and can be any
well-typed traces. The evaluation of ϕ on each tuple produces
a boolean value, resulting in a vector {bi, . . .}. This vector
is then used to filter the relation R through the operation ×,
retaining only the tuples that satisfy the predicate. PROJECT
evaluates each expression ei ∈ e on every tuple R′[j] ∈ R′.
The results are concatenated into a single tuple R[j], and
all such tuples are combined through a union operation to
produce the final result. The AGGREGATE rule begins by
deriving the grouping information R′ ↘g G from R′, which is
obtained from the evaluation result of the sub-query. It then
iterates over the list of aggregate expressions, evaluating each
expression ei using the tuple context T , which is created by
slicing R′ based on n j. Eventually, we obtain the result by
applying the grouping predicate on the intermediate result.

5.2 Security Conditions
The key security property of PICACHV’s semantics is ensuring
that the enforcement is sound. Following this work [35], the
enforcement mechanism ensures that data tagged as low has
been downgraded via specified functions in accordance with
its policy.

Definition 5.1 (Relaxed non-interference). For any data store
Σ, query q, either the evaluation of Σ,q results in an error, i.e.,
Σ ⊢ q ⇓ ✗, or the following holds:

Σ ⊢ q ⇓ ⟨ R, tr ⟩
=⇒ (∀c ∈ JRK ,⟨ c,L ⟩ ∈ tr =⇒ E(c)≈ Σ(c)),

where JRK means to extract identifiers of all data in the rela-
tion, E is a trace extraction function defined in Figure 10, ≈
is a compatible relation between policies, and we use Σ(c) to
denote the initial policy for c. Informally, E identifies every
transformation path of the data involved in computing c ∈ R.
We define the compatible relation in Figure 11.

This security definition encapsulates two key scenarios:
(1) evaluation results in an error due to a policy breach, re-

⟨ t,R,n1,n2 ⟩ ↓tr
tr′ R′

JOINT

t ↾n1

〈
t1, t⋆1

〉
P1 = {p11 , · · ·} ∀id ∈ ids(t1) =⇒ ⟨ id1i , p1i ⟩ ∈ tr tr =

⋃
tri

∀i ∈ |R|=⇒

R[i] ↾n2 ⟨ t2, t⋆2 ⟩ P2 = {p22 , · · ·} ∀id ∈ ids(t2) =⇒ ⟨ id2i , p2i ⟩ ∈ tr

⟨ ti, tri ⟩=

{〈
t⋆1 ∥ t ′1 ∥ t⋆2 , tr

′ 〉 , if t1
.
= t2

⟨ ⊥, tr ⟩ , otherwise
t ′1 = ⟨ id1, pv,⟨ · · · ⟩ ⟩ ∀ j ∈ |t ′1|=⇒

〈
id1, p1 ⊎ p2

〉
∈ tr′

⟨ t,R,n1,n2 ⟩ ↓tr

tr′ R′

Σ ⊢ q ⇓ ⟨ R, tr ⟩

JOIN

Σ ⊢ q1 ⇓ ⟨ R1, tr1 ⟩ Σ ⊢ q2 ⇓ ⟨ R2, tr2 ⟩ tr′ = tr1 ∪ tr2

∀i ∈ |R1|=⇒
(
⟨ R[i],R2,n1,n2 ⟩ ↓tr′

tri
Ri

)
Σ ⊢ (q1 ▷◁n1,n2 q2) ⇓ ⟨

⋃
i Ri,

⋃
tri ⟩

UNION
Σ ⊢ q1 ⇓ ⟨ R1, tr1 ⟩ Σ ⊢ q2 ⇓ ⟨ R2, tr2 ⟩

Σ ⊢ (q1 ∪q2) ⇓ ⟨ R1 ∪R2, tr1 ∪ tr2 ⟩

SELECT
Σ ⊢ q ⇓ ⟨ R, tr ⟩ ∀i ∈ |R|=⇒ ⟨ ⋆,R[i] ⟩ ϕ−→ ⟨ ⋆,bi ⟩)

Σ ⊢ σϕ(q) ⇓
〈

R× (b1, · · ·)T , tr
〉 RELATION

⟨ id,⟨ R,Γ ⟩ ⟩ ∈ Σ

tr = map(Γ,λx.⟨ fst(x),TrNone snd(x) ⟩)
Σ ⊢ R(id) ⇓ ⟨ R, tr ⟩

PROJECT

Σ ⊢ q ⇓ ⟨ R′, tr′ ⟩ ∀i ∈ |e|,∀ j ∈ |R′|=⇒
(
⟨ tr′,R′[j] ⟩ ei−→

〈
tri j,vi j

〉
R[j] = ||i vi j

)
Σ ⊢ πe(q) ⇓

〈 ⋃
j R[j],

⋃
i, j tri j

〉

AGGREGATE

Γ ⊢ q ⇓ ⟨ R′, tr′ ⟩ R′ ↘g G

∀i ∈ |e|,∀ j ∈ |G|=⇒
(

G j =
〈

t j,n j
〉

R′ ↾ni T ⟨ tr′,T ⟩ ei−→
〈

tri j,vi j
〉

R[j] = ||i (ti||vi j)
〈
⋆, t j

〉 ϕ−→
〈
⋆,b j

〉)
Σ ⊢ γe|g|ϕ(q) ⇓

〈 (⋃
j R[j]

)
×{b j, · · ·}T ,

⋃
i, j tri j

〉

Figure 9: Selected reduction rules for RAP.

E(TrNone ℓ) = ℓ

T =
(⊎

ti∈E(t)(ti ↪
op−→ ℓ)

)
E(TrSingle t,op, ℓ) = T

T =
(⊎

ti∈t E(ti)
)

E(TrMulti t,op, ℓ) =
(⊎

t∈T (t ↪
op−→ ℓ)

)

Figure 10: Trace extraction rules.

turning no output. (2) Relaxed non-interference ensures that
all data tagged as low L has undergone proper declassifi-
cation procedures as specified by the data owner. Notably,
when no declassification is allowed (i.e., all data is set to
H), this definition reduces to standard non-interference. For
instance, consider a simple program that performs an aggrega-
tion over the age attribute with a policy Aavg⇝ L, oututting
a final relation R containing a single value, ⟨ pv, id ⟩. Then

E(id)≡ (E(c0) ↪
avg,A−−−→ L) :: (E(c1) ↪

avg,A−−−→ L) :: · · · .

Theorem 5.1 (Soundness). The semantics enforces relaxed
non-interference.

p ≈ p
op ∈ O wf(p) p1 ≈ p2

(p ↪
op,ℓ−−→ p1)≈ (ℓO ⇝ p2)

Figure 11: Rules for the compatible relation ≈.

Theorem 5.2 (Strict non-interference). If no declassifica-
tion is permitted, then our semantics enforces strict non-
interference.

6 Implementation

In this section, we explain how the PICACHV runtime monitor
operates and how policies are encoded.

6.1 Implementing Policies

Encoding policies using shadow tables. As described in Sec-
tion 4, each relation is modeled as a list of tuples, with each
cell assigned a unique identifier id linking it to its correspond-

Policy File Loading

SELECT TRUNC(zipcode), SUM(income)
FROM R1, R2
WHERE R1.zipcode = R2.zipcode
GROUP BY zipcode Result

γ

⋈

π

R2R1

Query Plan

Q
uery Execution

Picachv M
onitor

InteractiveTEE

Figure 12: The high-level query execution workflow where we put the query execution engine and PICACHV runtime monitor
inside a TEE.

ing policies. To address the inefficiency of frequent policy
lookups during execution, particularly in parallel processing
environments (that require locks), we introduce the concept
of shadow tables, which maintains only the policy tags for the
given relation in a one-to-one correspondence. Shadow tables
mirror the structure of the original tables but store policy tags
instead of the actual data. This design separates data from its
policies, enabling efficient runtime policy enforcement. This
way, the policies for a given relation are stored separately
with the data and will be loaded at runtime when query is
being executed. In our implementation, shadow tables that
store policies are encoded in Apache Parquet format where
we serialize policies into byte arrays and compress them.

Support for flexible policies. Shadow tables also support
flexibility by allowing policymakers to load different policies
for the same relation from separately stored policy files. For
instance, researchers from different institutions working on
the same dataset may require distinct data use policies tailored
to their roles. The policymaker who controls the data can
design different policies for the same patient data depending
on the roles of the researcher. At the same time, this way
allows policies to be arbitrarily composed when multiple
relations with different policy requirements are being joined
during analysis. Even better is that this design allows for
policy overlay. Imagine if we have a “base policy” for a given
table and there would be several users having different privacy
preferences. As such, these requirements can be overlayed
on the base policy by applying the policy composition rules
shown in Figure 4.

6.2 Implementing PICACHV

At a high level, the implementation of PICACHV consists of
two key components: a formal proof written in Coq and a
runtime monitor developed in Rust, designed as a standalone
dynamic library. This library can be integrated into exist-
ing data analytics frameworks through foreign function inter-
faces (FFIs), requiring minimal modifications to the codebase.
Frameworks like Pandas and SparkQL can invoke PICACHV
’s monitoring APIs to enforce data use policies dynamically

whenever an executor is executed.
The high-level workflow of PICACHV is illustrated in Fig-

ure 12. The process begins with the parsing and transfor-
mation of a query into a query plan, which is subsequently
forwarded to the execution engine. PICACHV identifies and re-
trieves the relevant policy files from disk, based on the tables
referenced in the query—such as R1 and R2 in this example.
Query execution proceeds interactively, with PICACHV ac-
tively monitoring each node’s execution in real time. If the
query adheres to the specified policies, the computed results
are allowed to exit PICACHV. Conversely, if the query violates
any policies, an error is raised to block non-compliant results
from being returned. Note that we place PICACHV and data
inside TEEs for confidentiality, integrity, and verifiability.

Query execution. Figure 13 details the query execution pro-
cess in PICACHV. Data and policy shadow tables are first
fetched by TableScan operator, then processed by Project
and Aggregate, and finally sink is applied. At a high level,
since shadow tables are maintained for the original tables,
the execution process is divided into two parallel phases. Re-
call that the way shadow tables are implemented can support
flexible policies for the same table under different circum-
stances. The effects of relational operators on the shadow
tables will being actively captured by the semantics described
in Figure 9, while the actual data is processed using the native
query executor (in blue). In other words, the effects of the
relational operators (join ▷◁, projection π, and aggregate γ) on
the data will also be shadowed by the FFI calls. For instance,
when PICACHV is integrated with MySQL, its native query
executors are invoked to process the corresponding node in
the query plan. However, the native executor can only pro-
ceed to the next node if PICACHV confirms that its checks are
passed, and no policy breaches are detected

Sink. After execution, a sink function (see Figure 13) is ap-
plied before results are returned. This step prevents data with
remaining tags from inadvertently leaving the protected en-
vironment. This extra step is required to ensure operations
must be performed on the data. Consider a scenario where
an attacker attempts to access raw personal identifiers from a
dataset that should first be aggregated. Permitting such data

to pass through would breach the policy. Therefore, we im-
plement a sink function that checks for the presence of any
tags on the data. Thus, this final safeguard ensures that only
properly processed and policy-compliant data is released from
the system, with the protection of the query execution phase
where disallowed operations should never be performed.

⨝

TableScan (R1)

TableScan (R2)

Join(zipcode)

...
Policy Store

Project(Trunc
(zipcode))

⨝

π π

SUM(income)
ON zipcode

γ γ

Data

Shadow Tables

FFI call

π Native Executor

Sink

...
Data Store

Figure 13: The query execution phase.

Verifiability. The primary motivation for leveraging TEEs to
host PICACHV is to provide verifiable guarantees for private
data processing on the server side to external parties (data
owners) who lack direct control over their data in the cloud.
TEEs offer data owners the ability to verify:

• What is being executed within the TEE by utilizing re-
mote attestation, which produces a non-forgeable cryp-
tographic report detailing the TEE’s properties.

• How the binary running inside the TEE was built, en-

suring it originates from verified source code through a
trusted build system.

By initiating a remote attestation session, data owners can
validate the source code and build process referenced in the at-
testation report, providing reassurance that their data is being
processed securely and as intended.

6.3 Optimization Techniques

The nature of PICACHV as a dynamic security monitor nat-
urally raises performance concerns due to the overhead of
managing security labels at the cell level. We detail in this
section potential optimization techniques.

Materialization and caching. Inspired by materialization
techniques commonly used in databases [25, 33], we adapt
this concept for policy checking in PICACHV. Our approach
caches the verifications of frequently queried plans or sub-
plans that have already been confirmed as compliant with data
use policies. When a new query is issued, query rewriting
techniques are applied to determine if the query can be trans-
formed to leverage these cached materialized views. This strat-
egy reduces redundant checks and significantly reuses prior
verification computations, leading to improved efficiency.
However, implementing this approach poses challenges for
traditional program analysis and verification methods, as they
typically lack the higher-level semantic abstractions necessary
to capture the intent of programs.

Hybrid scheme. One of the key advantages of leveraging
query plans is the inherent ability to gain deep insights into
data flow. Query plans are embedded with strong semantics
that detail not only the flow of data but also the types of op-
erations performed, dependencies among data elements, and
potential interferences. This rich semantic information allows
us to conduct preliminary static analysis before engaging in
dynamic verification processes. By performing static analysis
on the query plan, we can potentially verify the entire query
or its subcomponents before execution. If the static analysis
successfully validates the entire query, then one can proceed
to the next query without further checks. Moreover, in cases
where the static analysis is insufficient or incomplete, dy-
namic verification can be seamlessly initiated from the point
where the static analysis has left.

7 Evaluation

In this section, we present the experimental results of PI-
CACHV to demonstrate that 1) The additional runtime over-
head of PICACHV is small, 2) PICACHV can support many
real-world analytical tasks and policies, and 3) PICACHV can
enforce these privacy policies.

7.1 Experiment Setup

Test environment. Our evaluation was conducted inside a
VM TEE that is based on the Intel Trusted Domain eXtension
(TDX) on a server with two 2.3 GHz Intel Xeon Platinum
8568Y+ CPUs (a total of 96 cores and 192 threads) and 512
GB of memory, running Ubuntu 22.04. We have integrated
PICACHV into a state-of-the-art data analytical engine called
Polars [9] (31K stars on GitHub): A powerful library for
high-performance data manipulation and analysis in Python
and Rust. We build all the components in release mode with
optimization level at O3.
Dataset and test suite. In our benchmark, we employ the lat-
est TPC-H specification (v3.0.1) [10], using tpch-dbgen [6]
to generate a dataset of different sizes by changing the scale
factors. The TPC-H is a decision support benchmark. It con-
sists of a suite of 22 business-oriented ad hoc queries on data
split across 8 tables. The queries and the data populating
the database have been chosen to have broad industry-wide
relevance. We implement TPC-H queries in Polars (using
its dataframe APIs). Currently, there are no official data use
policies for the TPC-H testbed. To address this gap, we manu-
ally crafted policies to simulate real-world scenarios. We then
manually verified output correctness.

7.2 Performance Overhead

End-to-end latency. We begin by presenting an overview
of PICACHV’s end-to-end performance overhead, comparing
it against the unmodified query engines from Polars as the
insecure baseline. We evaluate performance using selected
queries from the TPC-H benchmark suite. In this experiment,
we set the scale factor to 1. Queries not included in the bench-
mark contain some features currently not yet supported by
PICACHV. We exclude the policy file reading time from our
measurements to provide a more accurate representation of
runtime performance. We believe this overhead can be mit-
igated through strategies such as preloading policies during
startup, and this often occurs infrequently. To measure the
end-to-end performance of query execution with policy check-
ing enabled, we assign dummy labels (L) to each cell in this
benchmark. Figure 15 shows the complete experimental re-
sults. PICACHV generally shows higher execution times than
the baseline (from ∼ 1.2× to ∼ 15×), indicating some over-
head from policy checking. Some queries, like Q8, Q12, and
Q13, show minimal differences between Picachv and the base-
line, while others, such as Q9, Q15, exhibit more noticeable
performance gaps. Such large overheads, as indicated in the
microbenchmark (see Figure 14), can be attributed to both the
projection and aggregate operators.
Microbenchmark. To understand what components con-
tribute to the major runtime overhead, we choose query Q3
because the minimal query incorporates all the necessary op-
erations we want to evaluate from the TPC-H benchmark, and

Table size Policy file loading time (s)
10 MB 1.67

100 MB 12.16
1 GB 91.50
10 GB 703.64

Table 1: Time used to load policy files.

0.01 0.1 1 10
Scale Factor

10 2

10 1

100

101

102

La
te

nc
y

(m
s)

filter
project
join
aggregate
union

(a) Policy #A: Everything can be
used.

0.01 0.1 1 10
Scale Factor

10 2

10 1

100

101

102

La
te

nc
y

(m
s)

filter
project
join
aggregate
union

(b) Policy #B: The column
l_discount should be aggre-
gated with group size > 5.

0.01 0.1 1 10
Scale Factor

10 2

10 1

100

101

102

La
te

nc
y

(m
s)

filter
project
join
aggregate
union

(c) Policy #C: The column
l_discount should be added by
1.0.

0.01 0.1 1 10
Scale Factor

10 2

10 1

100

101

102

La
te

nc
y

(m
s)

filter
project
join
aggregate
union

(d) Policy #D: Composition of
Policy #B and Policy #C.

Figure 14: The result of the microbenchmark on each rela-
tional operator’s runtime overhead.

we slightly modified it to accommodate the policy. We run it
atop Polars to analyze the breakup of runtime overhead. The
benchmark results are reported in Figure 14. To give a clearer
understanding of which component significantly contributes
to the overhead, we split the overhead into the following
parts: 1) the cost of policy file loading, 2) project, 3) join,
4) aggregate, 5) union, and 6) filter. We also designed
this query for different privacy policies to see which kinds
of policies will cause significant policy checking overhead.
Also note that in the microbenchmark, we do not consider the
time taken for polars to fulfill the query but solely consider
the time taken by PICACHV. In this experiment, we set the
scale factor of the database generation from 0.01 to 10 (sizes
from 10 MB to 10 GB) to test the performance under different
sizes. In our experiment, we observed considerable overhead
when loading the policy files from the disk, and we report the

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q18 Q19 Q21
TPC-H Query

103

104

Ti
m

e
(m

s)

Baseline
Picachv

Figure 15: The runtime overhead of TPC-H testbed of PICACHV.

Dataset used in the task Task Name Execution Time (ms) Checking Time (ms) Result

Chronic illness [3]
1: autoimmune [2] 32.69 469.394 (14.36×) ✗; user_id
2: EDA [5] 23.93 1416.04(59.17×) ✗; group size too small
3: Symptoms [4] 170.25 588.089 (3.46×) ✓

Healthcare Dataset [8]
4: Healthcare [1] 22.12 299.95 (13.56×) ✓
5: Trends [11] 49.58 132.55 (2.67×) ✓
6: Analysis [7] 57.02 598.94 (10.50×) ✓

Table 2: Results of analytical tasks in the case study are presented. We use ✓ to indicate programs that comply with the privacy
policy and ✗ to denote instances where a policy breach was detected. For programs that fail to meet policy requirements, we
provide explanations. The original code was written in Python and subsequently adapted to Rust. We recorded execution times
without policy enforcement to establish a baseline for comparison.

latency in Table 1 to give a clearer understanding of the over-
head incurred by policy checking at runtime. Despite such
a large overhead, we believe it can be reduced by utilizing
more advanced optimization techniques. We instead focus on
the runtime overhead of policy checking of PICACHV. The
experimental results in Figure 14 show that the major per-
formance overhead comes from the project and aggregate
operator that involves data transformation, and as data grows,
the percentage of the aggregate operator soon dominates
(from 1% to nearly 99%). Interestingly, the impact of privacy
policy types is minimal during our evaluation.

Analysis on project and aggregate operators. To un-
derstand why project and aggregate contribute signifi-
cantly to runtime overhead, we conducted a detailed bench-
mark for these operators. In this experiment, we fixed the
policy type of the composition of policy #B and policy
#C to isolate their impact. In PICACHV ’s implementa-
tion, the project operator consists of two sub-routines: a)
policy_eval, which applies declassification rules to policy
tags, and b) process, which handles intermediate in-memory
representations for further processing. The aggregate op-
erator includes: a) group by, grouping tuples as per the
query plan; b) policy_eval_gb, applying declassification
rules during grouping; c) policy_eval_agg, declassifying
grouped policies; and d) process. Shadow tables are already
in-memory, so disk I/O overhead is excluded. We decompose
these operators into their primitives and provide a cost break-
down in Figure 16. For the project operator (Figure 16a),
process consistently dominates runtime overhead across all

0.01 0.1 1 10
Scale Factor

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

policy_eval
process

(a) The cost breakdown of the
project operator.

0.01 0.1 1 10
Scale Factor

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

groupby
policy_eval_gb
policy_eval_agg
process

(b) The cost breakdown of the
aggregate operator.

Figure 16: Detailed analysis on the project and aggregate
operators in terms of the percentage of their sub-routines.

scale factors, while policy_eval remains a smaller but no-
ticeable contributor, especially at smaller scales. This shows
the primary overhead in project comes from in-memory pro-
cessing logic rather than policy evaluation. For the aggregate
operator (Figure 16b), the experimental result highlights the
increased complexity of its sub-routines. As the scale factor
grows, the process ’s contribution remains prominent, but the
costs of policy_eval_gb and policy_eval_agg also grow
proportionally. Notably, group by contributes a smaller share
to the overall latency because this operation can be efficiently

parallelized. Since aggregate requires folding on the groups,
This indicates that the policy evaluation stages in aggregate
are computationally intensive and scale-sensitive. This ex-
plains why aggregate-intensive queries in the TPC-H testbed
might have more runtime overhead. Future works can be
focused on designing more efficient aggregate algorithms.

7.3 Case Studies

To demonstrate PICACHV’s practical applications and versa-
tility, we conducted case studies using two datasets: a chronic
illness dataset and a healthcare dataset. We adapted three
analytical tasks for each dataset, implementing them using
Polars. For these tasks, we manually crafted privacy policies
simulating real-world scenarios such as those found in the
All-of-Us project [44] and HIPAA regulations [43]. The re-
sults, presented in Table 2, show that PICACHV successfully
detected policy violations in two out of six tasks, while al-
lowing the compliant tasks to proceed. Notably, the policy
checking time often exceeded the task execution time, and the
in the worst case this would introduce nearly 59.17× over-
head, suggesting potential for future optimization. We found
this is mainly due to the group by operation found commonly
in data analytics, as suggested by Figure 14 and Figure 16b.

These case studies validate PICACHV’s capability to en-
force complex privacy policies particularly in sensitive do-
mains like healthcare. The monitor’s ability to detect and
prevent policy violations, even for quickly executed tasks,
underscores its value in ensuring responsible data use. Fur-
thermore, the application of PICACHV across diverse analyti-
cal tasks demonstrates its potential for adaptation to various
data-intensive fields requiring stringent privacy protection.

8 Discussion

Semi-structured and unstructured data. PICACHV’s opera-
tion at the relational algebra level inherently limits its support
for semi-structured and unstructured data. This limitation is
significant, as many real-world workloads involve interactions
with such data types. For instance, electronic health record
(EHR) analysis often requires processing clinical notes, which
are unstructured free text. Similarly, human genome analysis
deals with semi-structured Single Nucleotide Polymorphism
(SNP) data. Enforcing privacy policies on these diverse data
formats presents a substantial challenge that extends beyond
PICACHV’s current capabilities. Addressing this limitation
would greatly enhance the system’s applicability across a
broader range of data-intensive domains.
Expressiveness of relational algebra. While PICACHV’s use
of relational algebra as an abstraction enables policy enforce-
ment for a wide range of data operations, it also presents
limitations in expressiveness for certain advanced analytics
tasks. Many modern data analytics workflows, particularly in

machine learning and artificial intelligence, involve operations
that extend beyond the capabilities of traditional relational
algebra. For instance, complex matrix operations, iterative
algorithms, and non-linear transformations common in ML
models cannot be directly expressed using standard relational
operators. Recent work has proposed primitive operators for
a tensor relational algebra [54] tailored to these specific use
cases, analogous to SPJUA in traditional relational algebra.
Future work could explore extending PICACHV’s current so-
lution to incorporate such algebras, potentially broadening its
applicability to more advanced analytics scenarios.

Complete verification. We currently trust the query planner
to produce correct and policy-compliant plans. However, this
trust assumption introduces a potential vulnerability in the
overall system. In reality, a comprehensive security guarantee
would require verification of the entire pipeline, including the
query planner. Verifying the planner would ensure that the
generated query plans themselves adhere to the specified poli-
cies and do not introduce unexpected data flows or operations
that could violate privacy constraints. This extension of our
verification scope represents an important avenue for future
work, as it would close a significant gap in the end-to-end
formal guarantees of our system.

Automated policy interpretation. Translating privacy regula-
tions like GDPR into computer-interpretable policies typically
requires significant human effort, and this work implicitly as-
sumes the existence of such policies. Recent advancements
in Natural Language Processing (NLP), such as ARC [40],
offer promising solutions for automating this process. These
technologies could bridge the gap between human-readable
regulations and machine-executable policies, enhancing ef-
ficiency and accuracy in applying privacy standards. While
crucial for privacy compliance, we consider this challenge
orthogonal yet complementary to PICACHV. The synergy be-
tween automated policy interpretation and PICACHV could
significantly advance privacy-preserving data analytics.

9 Conclusion

In this paper, we present PICACHV, a significant advancement
in enforcing data use policies for analytics. By abstracting
program semantics via relational algebra and employing for-
mal verification, we have created a system that effectively
balances policy compliance with analytical flexibility. Our
evaluations demonstrate PICACHV’s efficiency, accuracy, and
real-world applicability across various regulatory frameworks.
While limitations exist, particularly for non-relational data,
PICACHV provides a robust foundation for responsible data
usage in an increasingly data-driven world. This work paves
the way for future developments in secure data analytics.

Acknowledgements

We extend our sincere gratitude to our shepherd and the anony-
mous reviewers for their invaluable feedback and constructive
suggestions. We also wish to thank Prof. Danfeng Zhang
for the insightful discussions, the members of CDCC, Mona
Vij, and Marcela Melara from Intel for their thoughtful com-
ments on an early draft of this paper, and Haosen Guan for
his kind support. This work was supported by NSF Grant
No. 2207231, 2419821. The views, opinions, and conclusions
expressed in this material are solely those of the authors and
do not necessarily reflect the views of NSF.

Ethics Considerations

The authors of this paper carefully reviewed related docu-
ments and PICACHV in its design and implementation. As a
policy enforcement tool, the design and implementation do
not involve any ethical considerations.

Open Science

All data and programs used in the evaluation section are pub-
licly available. Furthermore, the authors will fully disclose
the source code, formal proofs, and other benchmark tools as
a standalone artifact to the public to support future research.
Code can be found at https://github.com/picachv.

References
[1] analysis healthcare dataset — kaggle.com. https://www.kaggle.

com/code/manarmohamed24/analysis-healthcare-dataset. [Ac-
cessed 05-09-2024].

[2] autoimmune-symptom — kaggle.com. https://www.kaggle.com/
code/donottalk/autoimmune-symptom. [Accessed 03-09-2024].

[3] Chronic illness: symptoms, treatments and triggers — kag-
gle.com. https://www.kaggle.com/datasets/flaredown/
flaredown-autoimmune-symptom-tracker/data. [Accessed
02-09-2024].

[4] Flaredown Autoimmune Symptoms Prediction — kag-
gle.com. https://www.kaggle.com/code/dzmitryashkinadze/
flaredown-autoimmune-symptoms-prediction. [Accessed
05-09-2024].

[5] Flaredown Data Exploratory Analysis — kag-
gle.com. https://www.kaggle.com/code/ultron2412/
flaredown-data-exploratory-analysis#Symptoms. [Accessed
05-09-2024].

[6] GitHub - electrum/tpch-dbgen: TPC-H dbgen — github.com. https:
//github.com/electrum/tpch-dbgen. [Accessed 12-08-2024].

[7] Health Care Data Analysis — kaggle.com. https://www.kaggle.
com/code/vinod123kumar/health-care-data-analysis. [Ac-
cessed 05-09-2024].

[8] Healthcare Dataset — kaggle.com. https://www.kaggle.com/
datasets/prasad22/healthcare-dataset/data. [Accessed 02-09-
2024].

[9] Polars. https://pola.rs. Accessed: 2023-07-03.

[10] The tpc-h benchmark. https://www.tpc.org/tpch. Accessed: 2023-
07-16.

[11] Unlocking Healthcare Trends: Data Analysis — kag-
gle.com. https://www.kaggle.com/code/muhammadfurqan0/
unlocking-healthcare-trends-data-analysis. [Accessed
05-09-2024].

[12] Anindya Banerjee, David A Naumann, and Stan Rosenberg. Expressive
declassification policies and modular static enforcement. In 2008 IEEE
Symposium on Security and Privacy (SP’08), pages 339–353. IEEE,
2008.

[13] Abhishek Bichhawat, Matt Fredrikson, Jean Yang, and Akash Trehan.
Contextual and granular policy enforcement in database-backed appli-
cations. In Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security (AsiaCCS’20), pages 432–444, 2020.

[14] US Census Bureau. Disclosure avoidance for the 2020 census: An
introduction, 2021.

[15] Ethan Cecchetti, Andrew C Myers, and Owen Arden. Nonmalleable in-
formation flow control. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security(CCS’17), pages
1875–1891, 2017.

[16] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed,
Zhongshu Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley.
Intel tdx demystified: A top-down approach. ACM Computing Surveys,
56(9):1–33, 2024.

[17] Adam Chlipala. Static checking of dynamically− varying security
policies in database−backed applications. In 9th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’ 10), 2010.

[18] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lan-
tian Zheng, and Xin Zheng. Secure web applications via automatic
partitioning. In Proceedings of Twenty-First ACM SIGOPS Symposium
on Operating Systems Principles, SOSP ’07, page 31–44, New York,
NY, USA, 2007. Association for Computing Machinery.

[19] Stephen Chong and Andrew C Myers. Security policies for downgrad-
ing. In Proceedings of the 11th ACM conference on Computer and
communications security (CCS’04), pages 198–209, 2004.

[20] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology
ePrint Archive, 2016.

[21] Cynthia Dwork. Differential privacy. In International colloquium on
automata, languages, and programming, pages 1–12. Springer, 2006.

[22] Hubert Eichner, Daniel Ramage, Kallista Bonawitz, Dzmitry Huba,
Tiziano Santoro, Brett McLarnon, Timon Van Overveldt, Nova Fallen,
Peter Kairouz, Albert Cheu, et al. Confidential federated computations.
arXiv preprint arXiv:2404.10764, 2024.

[23] Mafalda Ferreira, Tiago Brito, José Fragoso Santos, and Nuno Santos.
Rulekeeper: Gdpr-aware personal data compliance for web frameworks.
In 2023 IEEE Symposium on Security and Privacy (SP’23), pages 1014–
1031. IEEE Computer Society, 2022.

[24] Tim Fischer, Denis Hirn, and Torsten Grust. Snakes on a plan: Compil-
ing python functions into plain sql queries. In Proceedings of the 2022
International Conference on Management of Data, pages 2389–2392,
2022.

[25] Robert C. Goldstein and Veda C. Storey. Materialization [database
design]. IEEE Transactions on Knowledge and Data Engineering,
6(5):835–842, 1994.

[26] Paolo Guagliardo and Leonid Libkin. A formal semantics of sql queries,
its validation, and applications. Proceedings of the VLDB Endowment,
11(1):27–39, 2017.

[27] Marco Guarnieri, Musard Balliu, Daniel Schoepe, David Basin, and
Andrei Sabelfeld. Information-flow control for database-backed appli-
cations. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 79–94. IEEE, 2019.

https://github.com/picachv
https://www.kaggle.com/code/manarmohamed24/analysis-healthcare-dataset
https://www.kaggle.com/code/manarmohamed24/analysis-healthcare-dataset
https://www.kaggle.com/code/donottalk/autoimmune-symptom
https://www.kaggle.com/code/donottalk/autoimmune-symptom
https://www.kaggle.com/datasets/flaredown/flaredown-autoimmune-symptom-tracker/data
https://www.kaggle.com/datasets/flaredown/flaredown-autoimmune-symptom-tracker/data
https://www.kaggle.com/code/dzmitryashkinadze/flaredown-autoimmune-symptoms-prediction
https://www.kaggle.com/code/dzmitryashkinadze/flaredown-autoimmune-symptoms-prediction
https://www.kaggle.com/code/ultron2412/flaredown-data-exploratory-analysis#Symptoms
https://www.kaggle.com/code/ultron2412/flaredown-data-exploratory-analysis#Symptoms
https://github.com/electrum/tpch-dbgen
https://github.com/electrum/tpch-dbgen
https://www.kaggle.com/code/vinod123kumar/health-care-data-analysis
https://www.kaggle.com/code/vinod123kumar/health-care-data-analysis
https://www.kaggle.com/datasets/prasad22/healthcare-dataset/data
https://www.kaggle.com/datasets/prasad22/healthcare-dataset/data
https://pola.rs
https://www.tpc.org/tpch
https://www.kaggle.com/code/muhammadfurqan0/unlocking-healthcare-trends-data-analysis
https://www.kaggle.com/code/muhammadfurqan0/unlocking-healthcare-trends-data-analysis

[28] Stefan Hagedorn, Steffen Kläbe, and Kai-Uwe Sattler. Putting pan-
das in a box. In Conference on Innovative Data Systems Research
(CIDR);(Online), page 15, 2021.

[29] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Establishing
browser security guarantees through formal shim verification. In Pro-
ceedings of the 21st USENIX Security Symposium (USENIX Security
12), pages 113–128, Bellevue, WA, August 2012. USENIX Association.

[30] Konstantinos Karanasos, Matteo Interlandi, Doris Xin, Fotis Psallidas,
Rathijit Sen, Kwanghyun Park, Ivan Popivanov, Supun Nakandal, Subru
Krishnan, Markus Weimer, et al. Extending relational query processing
with ml inference. arXiv preprint arXiv:1911.00231, 2019.

[31] Byeongwook Kim, Jaewon Hur, Adil Ahmad, and Byoungyoung Lee.
Laputa: Secure data analytics in apache spark with fine-grained pol-
icy enforcement and isolated execution. In Network and Distributed
Systems Security, 2025.

[32] Elisavet Kozyri, Stephen Chong, Andrew C Myers, et al. Expressing
information flow properties. Foundations and Trends® in Privacy and
Security, 3(1):1–102, 2022.

[33] P-A Larson, Jonathan Goldstein, and Jingren Zhou. Mtcache: Trans-
parent mid-tier database caching in sql server. In Proceedings. 20th
International Conference on Data Engineering, pages 177–188. IEEE,
2004.

[34] Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou,
Nadia Polikarpova, Deian Stefan, and Ranjit Jhala. Storm: refinement
types for secure web applications. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI’ 21), 2021.

[35] Peng Li and Steve Zdancewic. Downgrading policies and relaxed
noninterference. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL’05), pages
158–170, 2005.

[36] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang
Hui. Formally verified memory protection for a commodity multi-
processor hypervisor. In Proceedings of the 30th USENIX Security
Symposium (USENIX Security 21), pages 3953–3970. USENIX Asso-
ciation, August 2021.

[37] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John
Zhuang Hui. A secure and formally verified linux kvm hypervisor.
In 2021 IEEE Symposium on Security and Privacy (SP’21), pages
1782–1799, 2021.

[38] Wen-jie Lu, Zhicong Huang, Qizhi Zhang, Yuchen Wang, and Cheng
Hong. Squirrel: A scalable secure {Two-Party} computation frame-
work for training gradient boosting decision tree. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 6435–6451, 2023.

[39] Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wis-
nesky. Toward a verified relational database management system. In
Proceedings of the 37th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (POPL’10), pages 237–248,
2010.

[40] Sunil Manandhar, Kapil Singh, and Adwait Nadkarni. Towards auto-
mated regulation analysis for effective privacy compliance. In Network
and Distributed System Security Symposium (NDSS’24), pages 631–
647, 2024.

[41] Alana Marzoev, Lara Timbó Araújo, Malte Schwarzkopf, Samyukta
Yagati, Eddie Kohler, Robert Morris, M Frans Kaashoek, and Sam Mad-
den. Towards multiverse databases. In Proceedings of the Workshop
on Hot Topics in Operating Systems (HotOS’19), pages 88–95, 2019.

[42] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter
Druschel. Qapla: Policy compliance for database-backed systems. In
26th USENIX Security Symposium (Sec’ 17), pages 1463–1479, 2017.

[43] Rachel Nosowsky and Thomas J Giordano. The health insurance porta-
bility and accountability act of 1996 (hipaa) privacy rule: implications
for clinical research. Annu. Rev. Med., 57:575–590, 2006.

[44] All of Us Research Program Investigators. The “all of us” research
program. New England Journal of Medicine, 381(7):668–676, 2019.

[45] Andrei Sabelfeld and Andrew C Myers. Language-based information-
flow security. IEEE Journal on selected areas in communications,
21(1):5–19, 2003.

[46] Andrei Sabelfeld and David Sands. Dimensions and principles of de-
classification. In 18th IEEE Computer Security Foundations Workshop
(CSFW’05), pages 255–269. IEEE, 2005.

[47] Daniel Schoepe, Daniel Hedin, and Andrei Sabelfeld. Selinq: tracking
information across application-database boundaries. In Proceedings
of the 19th ACM SIGPLAN international conference on Functional
programming (ICFP’14), pages 25–38, 2014.

[48] David Schultz and Barbara Liskov. Ifdb: decentralized information
flow control for databases. In Proceedings of the 8th ACM European
Conference on Computer Systems (EuroSys’13), pages 43–56, 2013.

[49] AMD Sev-Snp. Strengthening vm isolation with integrity protection
and more. White Paper, January, 53:1450–1465, 2020.

[50] Hesam Shahrokhi, Amirali Kaboli, Mahdi Ghorbani, and Amir
Shaikhha. Pytond: Efficient python data science on the shoulders
of databases. In 2024 IEEE 40th International Conference on Data
Engineering (ICDE), pages 423–435. IEEE, 2024.

[51] Lun Wang, Usmann Khan, Joseph Near, Qi Pang, Jithendaraa Sub-
ramanian, Neel Somani, Peng Gao, Andrew Low, and Dawn Song.
PrivGuard: Privacy regulation compliance made easier. In 31st
USENIX Security Symposium (Sec’ 22), pages 3753–3770, 2022.

[52] Jean Yang, Travis Hance, Thomas H Austin, Armando Solar-Lezama,
Cormac Flanagan, and Stephen Chong. Precise, dynamic information
flow for database-backed applications. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’16), pages 631–647, 2016.

[53] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language
for automatically enforcing privacy policies. In Proceedings of the
39th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL’12), pages 85–96, 2012.

[54] Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bour-
geois, and Chris Jermaine. Tensor relational algebra for distributed
machine learning system design. Proceedings of the VLDB Endowment,
14(8), 2021.

[55] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working
sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 10), 2010.

[56] Wen Zhang, Aurojit Panda, and Scott Shenker. Access control for
database applications: Beyond policy enforcement. In Proceedings of
the 19th Workshop on Hot Topics in Operating Systems, HOTOS ’23,
page 223–230, New York, NY, USA, 2023. Association for Computing
Machinery.

[57] Wen Zhang, Eric Sheng, Michael Chang, Aurojit Panda, Mooly Sagiv,
and Scott Shenker. Blockaid: Data access policy enforcement for
web applications. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’ 22), pages 701–718, 2022.

[58] Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng.
Sectee: A software-based approach to secure enclave architecture using
tee. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 1723–1740, 2019.

A Proofs

A.1 Proofs for Theorem 5.1
Proof Sketch. Let Σ be any data store, q be any query, and st
be any program state. By definition, either Σ ⊢ q ⇓ ⟨ R, tr ⟩

holds or it does not. For the former case, we apply mathemati-
cal induction over Σ ⊢ q ⇓ ⟨ R, tr ⟩. In the latter case, an error
is thrown and nothing is returned.

A.2 Proofs for Theorem 5.2
Proof. By the definition of the finalization function at the
end of the execution, we immediately filter out data with the
remaining tags. Thus, if the program returns valid data, then
following the soundness theorem, due to invocation of the
sink function, we know that ∀c ∈ R,E(c)≡ L, meaning that
the query trace is equivalent to a computation that involves
no secret. This completes the proof.

B Policies Used in the Case Studies

The policies used in the case study of Section 7 are presented
in Table 3.

C Query 3 from the TPC-H Benchmark

We present the code of Query 3 from the TPH-H benchmark
used in our microbenchmark in Listing 1.

Listing 1: Code of Query 3 in the TPC-H Benchmark

1 SELECT
2 l_orderkey,
3 sum(l_extendedprice * (1 - l_discount)) as

revenue,
4 o_orderdate,
5 o_shippriority
6 FROM
7 customer,
8 orders,
9 -- We added a self-union for `lineitem`.

10 (SELECT * FROM lineitem)
11 UNION ALL
12 (SELECT * FROM lineitem)
13 WHERE
14 c_mktsegment = 'BUILDING'
15 AND c_custkey = o_custkey
16 AND l_orderkey = o_orderkey
17 AND o_orderdate < date '1995-03-15'
18 AND l_shipdate > date '1995-03-15'
19 GROUP BY
20 l_orderkey,
21 o_orderdate,
22 o_shippriority
23 ORDER BY
24 revenue desc,
25 o_orderdate
26 LIMIT 20;

Dataset Privacy Policy in Natural Language

Chronic illness [3]

1. People whose age > 89 must be generalized (Safe Harbor).
2. user_id should be removed (Safe Harbor).

3. trackable_* should only be aggregated with one of MAX, MIN, SUM, COUNT, and
size should be greater than 20 (NIH-like policy).

Healthcare dataset [8]
1. name should be removed (Safe Harbor).

2. medical_condition must be aggregated with one of MAX, MIN, SUM, COUNT.
(Common aggregate requirements)

Table 3: The dataset and its corresponding privacy policies used in case studies.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Formalizing Data Use Policies
	4.1 Sensitivity Labels
	4.2 Policies
	4.3 Policy Expressiveness

	5 Formalizing Picachv
	5.1 Formal Semantics
	5.1.1 Expressions
	5.1.2 Relational Operators

	5.2 Security Conditions

	6 Implementation
	6.1 Implementing Policies
	6.2 Implementing Picachv
	6.3 Optimization Techniques

	7 Evaluation
	7.1 Experiment Setup
	7.2 Performance Overhead
	7.3 Case Studies

	8 Discussion
	9 Conclusion
	Acknowledgements
	Ethics Considerations
	Open Science
	References
	A Proofs
	A.1 Proofs for Theorem 5.1
	A.2 Proofs for Theorem 5.2

	B Policies Used in the Case Studies
	C Query 3 from the TPC-H Benchmark

