
A Verified Confidential Computing as a Service
Framework for Privacy Preservation

Hongbo Chen1*, Haobin Hiroki Chen1, Mingshen Sun2*, Kang Li3*,
Zhaofeng Chen3*, and XiaoFeng Wang1

1Indiana University Bloomington, {hc50,haobchen}@iu.edu, xw7@indiana.edu
2Independent Researcher, bob@mssun.me

3CertiK, {kang.li, zhaofeng.chen}@certik.com

Abstract
As service providers are moving to the cloud, users are

forced to provision sensitive data to the cloud. Confidential
computing leverages hardware Trusted Execution Environ-
ment (TEE) to protect data in use, no longer requiring users’
trust to the cloud. The emerging service model, Confiden-
tial Computing as a Service (CCaaS), is adopted by service
providers to offer service similar to the Function-as-a-Serivce
manner. However, privacy concerns are raised in CCaaS, es-
pecially in multi-user scenarios. CCaaS need to assure the
data providers that the service does not leak their privacy to
any unauthorized parties and clear their data after the service.

To address such privacy concerns with security guaran-
tees, we first formally define the security objective, Proof of
Being Forgotten (PoBF), and prove under which security con-
straints PoBF can be satisfied. Then, these constraints serve
as guidelines in the implementation of the PoBF-compliant
Framework (PoCF). PoCF consists of a generic library for
different hardware TEEs, CCaaS prototype enclaves, and a
verifier to prove PoBF-compliance. PoCF leverages Rust’s
robust type system and security features, to construct a ver-
ified state machine with privacy-preserving contracts. Last,
the experiment results show that the protections introduced
by PoCF incur minor runtime performance overhead.

1 Introduction

In recent years, cloud computing has gained significant mo-
mentum, revolutionizing the way individuals and organiza-
tions store, process, and access their data. However, amidst
the growing popularity of cloud computing, a pressing con-
cern arises: the protection of data privacy. In addition to
algorithmic solutions (e.g., Multi-Party Computation [92]),
confidential computing protects data in use through hardware-
based trusted execution environments [26]. The development
of hardware architectures, cloud infrastructures, and system-
level middlewares has flourished in the past decades, mak-

*Part of this work is done while the authors were at Baidu X-Lab.

ing confidential computing (CC) more accessible through
public clouds such as Google Cloud [43] and Microsoft
Azure [63]. Both start-ups [35, 41] and established compa-
nies [19] offer solutions to businesses, such as healthcare,
finance, blockchain, and privacy compliance.

Trusted Execution Environments (TEEs) have emerged as
a solution for privacy concerns, providing a sheltered envi-
ronment for computations and data analysis. TEEs ensure
privacy by employing isolation, encryption, and attestation.
The trusted processor creates a secure enclave, encrypting its
memory and restricting access solely to the CPU. This pro-
tects the integrity of code and data within the enclave. With
isolation and encryption combined, TEEs effectively maintain
data confidentiality and privacy in computations. Moreover,
TEEs support the attestation of the enclave program’s au-
thenticity to a remote verifier, providing the cryptographic
measurement of the enclave and the authenticity of the pro-
cessor to the verifier. allowing the data provider to confidently
share sensitive information to the enclave, knowing that the
expected enclave program is being executed by a genuine
processor [22, 28].

Despite the sophisticated design of TEEs, privacy concerns
continue to exist. While the measurement of the in-TEE pro-
gram guarantees that the program is authentic, no evidence
about its behavior is given. There is a risk that the enclave
program may unintentionally leak sensitive data. Addition-
ally, manually auditing the enclave program’s source code
to ensure the absence of data leaks is error-prone and time-
consuming. Hence, there is a need to adopt additional security
measures to enhance TEEs’ privacy-preserving capabilities.

Recent advancements in frameworks have made Confiden-
tial Computing as a Service (CCaaS) increasingly available
on cloud platforms [13, 72, 79, 84]. However, the exchange
of information between the secure enclave and the untrusted
environment raises privacy concerns, as private information
may be leaked (e.g., via logging). The simplest solution to
prevent such leaks would be to eliminate all communication
between the enclave and the outside world, but this overkill
completely eliminates usability and maintainability. Addi-

tionally, privacy concerns extend beyond data leakage to the
secret residue. To accelerate enclave initialization, CCaaS
frameworks often serve multiple users after a single launch.
Hence, if sensitive data remains in the enclave after one user’s
session, malicious attackers could steal it, e.g., by reading the
heap where previous user’s private data was not cleared [90].

Fortunately, while data providers must trust the hardware
TEE, they can verify the enclave program instead of blindly
relying on its measurement. Our goal is to address privacy
leakage and residue threats in TEE applications and accom-
modate the privacy concerns of data providers by verifying
the enclave program. Researchers have identified these prob-
lems and tried to solve them [4,60,90], but previous solutions
face limitations as CC is moving to the cloud as a service.
In more detail, they: 1) lack theoretic foundations; 2) do not
handle leakage and residue problems together; 3) have a loss
of generality for various hardware TEEs. Our solution aims
to be more comprehensive, with formal foundations, while
still being applicable to various hardware TEEs.

Our contributions. For confidential computing, we propose
a privacy-preserving principle called Proof of Being Forgotten
(PoBF). It requires that secrets are not leaked during the en-
clave execution and are zeroized immediately after use. PoBF
regulates enclave program which deals with secrets (i.e., pri-
vacy) so that they are not revealed to any unauthorized party,
and are consumed for processing or encrypted after use. As
the essential property, Being Forgotten has two requirements
for the enclave program: NOLEAKAGE and NORESIDUE.
NOLEAKAGE requires that the enclave program cannot leak
secrets during its execution; NORESIDUE requires that secrets
are irrecoverably destructed or zeroized immediately after the
execution. Note that “secrets” refers to both sensitive data
provided by users and data tainted with sensitive data.

We also aim to provide a framework for building privacy-
preserving enclave programs for confidential computing. The
framework guarantees that the user’s privacy is preserved in
the course of the computation. Our effort starts with build-
ing a formal model of the generalized enclave and proving
a series of theorems to establish the security constraints of
PoBF. We then design and implement the PoBF-Compliant
Framework (PoCF), which consists of three submodules: a
PoBF-compliant library that is generic for different hardware
TEEs, CCaaS prototypes in Intel SGX and AMD SEV, and
a verifier to prove PoBF-compliance for the whole enclave
program. When combined with verification technologies, the
PoCF can be audited with confidence. Data providers can run
the PoCF verifier on the enclave code, ensuring that the veri-
fied code is PoBF-compliant. Therefore, by confirming that
the measurement of the remote enclave in remote attestation
and the measurement derived from the locally built enclave
are identical, the data provider knows that they meet the same
PoBF property. Last, we evaluate our implementation and
demonstrate that the protections in PoCF incur negligible
overhead while meeting the security requirements.

In the design architecture, PoBF regulates privacy protec-
tions for data providers. On the implementation front, PoCF
protects data confidentiality. Our code is available at [25]. In
summary, we make the following contributions:

• Proposal of the PoBF principle with two requirements,
leading to several formally proved security constraints.

• Design and implementation of PoCF, including a generic
library for general CC tasks, a prototype enclave on Intel
SGX, and a verifier to ensure PoBF compliance.

• Evaluation of the prototype CCaaS frameworks on secu-
rity, overhead, real-world tasks, and its limitations.

Roadmap. We first introduce the background knowledge
in § 2 and the detailed threat model in § 3. Secondly, the
formalization of PoBF requirements and proof of the security
constraints is presented in § 4. Guided by the constraints, we
explain the design trade-offs and details of PoCF in § 5. Then,
we exhibit the implementation in Rust and its verification
towards PoBF properties in § 6. After that, PoCF is evaluated
on security and performance in § 7. The development of
verification tools for Rust is still at an early stage, so we
discuss the limitations of our artifacts in § 8, especially on
the modeling accuracy and precision in taint analysis. Finally,
§ 9 summarizes related work, and § 10 concludes our work.

2 Background

2.1 Confidential Computing

Hardware TEEs. Processor manufacturers and architecture
designers have realized and released various designs of TEE,
including AMD SEV, Intel SGX, and Intel TDX [28, 50, 56]
for X86, TrustZone and CCA for ARM [8, 9], as well as vari-
ous prototypes [37, 44, 59] for RISC-V. Among them, TDX,
SEV, and CCA leverage the capabilities of virtual machines
(VM) and can be regarded as VM-based TEEs. Intel SGX is
a user-land TEE where the enclave program runs at the user
level. All these TEEs separate the trusted world (or namely
trusted Realm in ARM CCA and Trusted Domain in Intel
TDX) from the normal (i.e., untrusted) world, and have in-
struction set architecture extensions (e.g., EENTER and EEXIT
on Intel SGX) to control world switch. To defend against
privileged attackers, e.g., system admin and operating system,
a series of security primitives are recruited 1) isolated exe-
cution denies unauthorized access from privileged software;
2) remote attestation assures the end user that software run-
ning inside TEE is expected; 3) memory encryption mitigates
hardware and software attacks related to the memory. Thus
confidential computing is realized by leveraging hardware
TEEs to protect data privacy during computing [26].
Confidential Computing as a Service. Based on hardware
TEEs, the community offers several middlewares to support
CC tasks. Some of these middlewares allow for CC tasks to

Secure Channel
Establishment

Input Data
Provision

Decryption

Task Execution

Encryption

Output Data
Result Return

Key Negotiation
Data Provider

Task
Submission Third-party

Developer

Data Provider

Data Provider CCaaS Framework

Input Data

Figure 1: CCaaS workflow.

be performed in a similar manner to Function as a Service sys-
tems [72,79,84]. They typically provide pre-built tasks while
also accepting code submissions from potentially malicious
third-party vendors. The service starts after being initially de-
ployed by system admins (e.g., on a TEE-enabled cloud). As
depicted in Figure 1, the user first establishes a secure channel
with the platform after remote attestation (e.g., RA-TLS [58]).
Then the data provider provisions input data to the CCaaS
framework, which later decrypts the input, executes the CC
task, encrypts the result, and finally returns the output to the
user. The CCaaS framework can be deployed as a service to
support a multitude of data providers.

2.2 Static Program Analysis for Security

Rust Code. The Rust programming language embeds plenty
of security checks (e.g., lifetime) within its compiler to
achieve type safety, which implies memory safety [65, 67]. A
resilient type system is instrumental in preventing type con-
fusion that could lead to serious security concerns such as
dereferencing invalid pointers and memory corruption [34].
Type-checking also empowers language-based access control.

Moreover, static code analyzers present additional means
to bolster the security of Rust code. For example, Prusti is ca-
pable of verifying the functional behaviors of Rust programs
using code annotations [12]. These annotations are converted
automatically to formal proof with the help of an intermediate
language, Viper [64]. Another example is MIRAI, an abstract
interpreter of Rust’s mid-level intermediate representation
(MIR). It approximates the state of a program at any given
point, allowing for the determination of certain properties stat-
ically [29, 30]. MIRAI also supports tag-based taint analysis
which tracks the flow of data through a program [68].

Formal Method. Formal methods provide a way to specify a
system and its properties using formal language. This allows
for the properties to be expressed, proved, and mechanically
checked, making the system’s design theoretically secure.
However, the complexity of programming languages used in

production, particularly with the consideration of libraries,
makes it hard to verify that the code satisfies the expected
security properties. Developers may also introduce bugs that
compromise the robustness of the program (e.g., using a cryp-
tographic algorithm in the wrong way), deviating the whole
system from the verified properties. Therefore, previous re-
search turned to verify the methodologies [38, 52, 75].

3 Threat Model

First of all, the TEE hardware manufacturers such as Intel
and AMD are trusted, so processors implementing TEEs and
the software SDKs (usually offered by the manufacturers)
running inside the secure enclaves are also considered trust-
worthy. Detailed threat models for different TEEs vary, but
the privileged software and personnel outside the secure en-
clave are not trusted following the official threat models pub-
lished by TEE manufacturers [10, 50, 51, 56]. For example,
in the user-land TEE Intel SGX, guest and host OS, hyper-
visor, and BIOS are not trusted, whereas in the VM-based
TEE (e.g., AMD SEV and Intel TDX), although the host OS
is also untrusted, the guest VM itself is trusted. Nevertheless,
these threat models share one common point: people with
privileged access to the system (e.g., system administrator)
are not trusted. Similar to previous work on building TEE
containers [11, 23, 74], we believe side-channel attacks are
orthogonal to our work and can be mitigated by other means,
such as oblivious RAM [3,5,69]. Besides, denial of service is
also not considered by PoBF and PoCF, and we discuss their
effect and potential mitigation in § 8.

In CCaaS workflow, trust is a bit more intricate since en-
clave software can be developed by different software vendors:
the framework may accept task code submitted by third-party
developers. Our artifact, the PoCF Library & Enclave ex-
cept for the CC task, is trusted but verified, as there may be
potential security vulnerabilities (e.g., introduced by the de-
veloper). On the other hand, the CC task code uploaded by
third-party developers is not trusted and must pass verifica-
tion. This model is in line with the standard treatment of other
CCaaS frameworks [72, 79]. When the CCaaS framework is
hosted as a persistent enclave service to support multiple data
providers, malicious data might be introduced into the system
via their input. For example, the malicious input could be fed
to exploit the platform, stealing the secrets of others who have
been previously served by the framework [90]. So, PoCF does
not trust the input from data providers.

From the stance of a data provider, the hardware TEE man-
ufacturer, as well as the security primitives provided by it, are
trusted. However, The cloud, its operators, and the software
stack running outside the enclave are not trusted. The CCaaS
framework running inside the enclave is trusted but verifiable,
whereas the CC tasks submitted by third-party developers are
untrusted and verified. Other data providers of the CCaaS are
not trusted since their input may contain malicious exploits.

The CCaaS framework should protect her private data.

4 Formalizing PoBF

We formally define the concept of “Being Forgotten” and
its two requirements for the purpose of establishing theo-
retic foundations to develop trustworthy enclave programs.
However, these intuitive definitions alone have little practical
meaning to the CC community. Developers need to know how
to tweak their software to meet such requirements. Thus, we
propose a generalized model for enclave programs that can
be applied to various hardware TEEs. Based on the model,
we showcase what enclave programs can provably satisfy
PoBF requirements. The proof acts as security constraints for
enclave design, implementation guidelines, and verification
conditions for the PoCF Verifier.

4.1 Modeling the Enclave

General TEE Model with Tags. Processors with TEE sup-
port have two main architectural differences from those with-
out. First, they introduce a new execution mode, namely
EnclaveMode in our model, such that the program running
in this mode can access the data belonging to the enclave.
Second, they restrict access to the enclave from outside the
enclave. We model the generalized TEE in Coq as shown
in Table 1. The accessible locations from the viewpoint of
programs can be either on the stack with an offset (Stack(n)),
a place storing the return value (RV, e.g., RAX in x86-64 ar-
chitecture), or an identifier of other places (Ident(str), e.g.,
other general-purpose registers and heap locations denoted by
an identifier str). Under this model, accessible memory could
be regarded as a set of locations. While the cell c denotes
storable locations from the architectural viewpoint. It contains
a value v either in the untrusted world Normal(v), the enclave
Encalve(et,v), or unused memory Unused. To secure sensi-
tive data, we introduce two types of tags: 1) Security Tag vt,
attached to the value v, to denote the security level; 2) Enclave
Tag et to denote confined Zone locations inside the enclave.
Secret should always be stored inside the confined Zone.
Storable me can then be regarded as a mapping from locations
l to cells c, encoded as a list of pairs List(l,c). This mapping
also provides information about how values are stored on the
machine (e.g., in the Zone of the enclave). Reading a location
involves iterating the storable me and obtaining a result r.
If a location is present as a pair in me, r will be an Ok(v),
otherwise, an error Err(e). Obviously, access to the enclave
locations is restricted to EnclaveMode. Attempting to access
them in NormalMode will result in Err(NoPrivilege), and
attempting to access an unallocated location, Unused, will re-
sult in Err(Invalid). Finally, the state of the enclave st can
be represented by a triplet st = (me, mo, errs), where errs
denotes a list of errors that occurred if any. Raw pointers are

Table 1: Generalized model of secure enclaves.

Type Sym. Definition
Natural n ∈ N
String str ∈ S
Bool b ::= True|False
Value v′ ::= ConcreteN(n)|ConcreteB(b)|Any
Sec. Tag vt ::= Secret|NotSecret|Nonsense
TagValue v ::= (v′,vt)
Mode mo ::= EnclaveMode|NormalMode
Location l ::= Stack(n)|Ident(str)|RV
Enc. Tag et ::= Zone|NonZone
Cell c ::= Nomral(v)|Enclave(et,v)|Unused
Result r ::= Ok(X)|Err(e)
Error e ::= Invalid|NoPrivilege
Storable me ::= List (l,c)

not modeled to abstract away most memory errors as modern
programming languages such as Java and Rust enforce type
safety, eliminating memory errors. This aligns with our model
and eliminates the need to model memory safety properties.

Enclave Program Model. To model the program running
inside the enclave, we utilized a modified Imp language to
simplify programming language complexities, while retaining
Turing completeness and expressiveness for reasoning TEE
properties [70]. The syntax, as shown in Table 2, includes
recursively defined Expression and Procedure. Expression
includes a value (i.e., constant), accessing a location, as well
as unary and binary operations. We extend the Imp language
by adding two special statements (i.e., commands), named
Eenter and Eexit, to switch into and out of EnclaveMode.
Note here we deliberately use similar symbols of enclave
enter and exit instructions (EENTER and EEXIT) in Intel SGX
since they are semantically similar. Besides, procedures can
contain commands of assignment and control flow statements,
and their arguments are passed implicitly through storable
locations. Procedures correspond to functions in real-world
programming languages.

This syntax is capable of modeling the complex behav-
iors in mode switching and exceptions (i.e., errors and inter-
rupts) for enclave programs. For example, Intel SGX handles
Asynchronous Enclave Exits by saving the current execution
context to the State Save Area and restoring the previous
state saved at EENTER [28]. AMD SEV handles VMEXIT
by saving the register state of the secure guest VM to the
Virtual Machine Control Block [7]. These world switchings
can be captured by Eenter and Eexit procedures, regardless
of specific hardware TEE. State saving and restoring can be
represented as a series of reads/writes to the storable using
Asgn l := e.

4.2 PoBF Concepts

We outline the concepts of PoBF and their specific require-
ments in detail. First, we present a list of definitions, which
are formally defined in our proof in Coq. We illustrate the

Table 2: Enclave program syntax.

Term Sym. Definition
Exp. e ::= l|v′|UnaryOp(e)|BinaryOp(e1,e2)
Proc. p ::= Nop | Eenter | Eexit | Asgn l := e

|If e Then p1 Else p2 | While e Do p
|p1; p2

concepts in natural language here for better understanding.

Definition 4.1 (Critical State). For a state st = (mo,me,errs),
if a cell c is in the Zone of the enclave memory and its value
is tagged as Secret, then the state st is critical.

Definition 4.2 (Leaked). Given the storable me, if there exists
a location l such that the corresponding cell c is not located
in Zone and contains a value v tagged Secret, then predicate
Leaked(me) evaluates to True, otherwise False.

Definition 4.3 (Strong Residual). Given the storable me, if
there exists a location l such that the corresponding cell
c stores a value v tagged Secret, then predicate strong
Residual′(me) evaluates to True, otherwise False.

Definition 4.4 (Weak Residual). Weak Residual is the same
as strong Residual′ except that it allows the return value
location RV to hold a value v tagged Secret.

Definition 4.5 (Being Forgotten for A Procedure). Being
Forgotten BF(p,st) is a predicate evaluating to True when
Leaked evaluates to False all along the execution of p on
initial state st, in conjunction with (weak or strong) Residual
evaluates to False at ending state st ′ after p is executed.
Otherwise, BF evaluates to False.

Here, Leaked and Residue are predicates, deriving two se-
curity requirements of BF – NOLEAKAGE and NORESIDUE,
each requiring that the corresponding predicates evaluate to
False, i.e., BF := ¬Leaked∧¬Residue. We expect the en-
clave program to have BF property, meaning that it meets both
NOLEAKAGE and NORESIDUE requirements. For NOLEAK-
AGE requirement, if we want Leaked(me) to evaluate to
False, the secrets should remain within a designated "Zone"
along the execution. However, for NORESIDUE, the strong
Residual′ may lack practical meanings since it disallows
inter-procedural secrets. So we define weak Residual where
Secret value can be left on and passed via the return value
RV. Therefore, the whole task satisfies BF when both Leaked
and weak Residue evaluate to False for all the procedures
in the task, except that strong Residual′ evaluate to False

for the last procedure. Such treatment is practical and secure
because it permits the secure flow of secrets and prevents
leakage throughout the task. Being Forgotten for a task T ,
BF(T), is defined in this way. We say a task T has the Proof
of Being Forgotten (PoBF) property when BF(T) evaluates to
true, i.e., BF holds for task T .

4.3 PoBF Security Constraints
Single-user enclaves don’t require handling of residue as they
self-destruct after the execution. However, for multi-user en-
claves serving persistently, privacy residue from users must be
erased to prevent subsequent malicious attackers from learn-
ing sensitive information. We address the security constraints
necessary to fulfill NOLEAKAGE and NORESIDUE.

Theorem 4.1 (Constraints for NOLEAKAGE). For procedure
p with initial state st = (me, mo, errs), executing p does not
leak the secret if: 1) the initial state st does not leak secret. 2)
all memory writes (Asgn l := e) in p are within Zone if e is
tagged with Secret. 3) p aborts when an error occurs.

This theorem is intuitive and mechanically proved in Coq.
The first prerequisite establishes a clean starting point, which
is satisfied right after enclave initialization. The second one
mandates that all writes of Secret be confined within the
Zone to prevent privacy breaches. The third constraint elim-
inates potential errors resulting from malfunctioning opera-
tions (e.g., accesses to Unused memory). Note that NOLEAK-
AGE does not necessarily mean only these three conditions
are met, as there may be alternative security constraints that
provably guarantee NOLEAKAGE. Prior to examining the the-
orem corresponding to NORESIDUE, an auxiliary procedure,
zeroize, is introduced to aid in scrubbing privacy residue.

Definition 4.6 (Zerorize). A procedure is defined as zeroize
if, for the given storable me = (l,c) denoting every location-
cell pair in the Zone of the enclave, it clears the tagged values
v stored in such cells c and sets the security tag to NotSecret.

Theorem 4.2 (Constraints for NORESIDUE). For a pro-
cedure p, if it satisfies the NOLEAKAGE requirement, the
procedure p′ derived by concatenating p and zerorize (i.e.,
p′ = p; zerorize) satisfies the NORESIDUE requirement.

A challenge of applying Theorem 4.2 to every procedure
is that all intermediate computation results must be cleared
within the Zone, hindering the implementation. Alternatively,
we only focus on procedures executed in critical states and
loosen the requirement for zeroize to ignore RV for all pro-
cedures p. Procedures running in critical states must meet
the NORESIDUE requirement. The last procedure of a task
should not end in a critical state, which means that no secrete
is presented (e.g., the final result is encrypted to RV). This
can be achieved by instrumentation that executes a function
zerorize() at the end of each procedure executed in critical
states. Its implementation details are discussed in § 6.

Concurrent Execution. From a resource management stand-
point, concurrent enclave programs can result in potential
privacy leakage due to the sharing of resources among users.
To mitigate this risk, shared resources should be disallowed.
As a result, executing a multi-threaded enclave is equivalent
to executing separate single-threaded tasks. A multi-threaded

enclave program without shared states satisfies the PoBF con-
straints, as each thread is a PoBF-compliant task.

4.4 PoBF Design Guidelines
The established security constraints discussed earlier can en-
lighten the design of PoBF-compliant enclave programs. We
now provide a brief overview of how these theorems shape
the development of enclave programs, and we present the
detailed design and implementation of PoCF in § 5.

The concept of Zone can be approximated as a software
sandbox where secret-related executions occur within it (e.g.,
memory reads and writes). Previous research has incorpo-
rated WebAssembly (WASM) into TEE, where WASM is
interpreted in a strongly isolated sandbox [42, 61]. The Zone
can also be viewed as the readable and writable locations for
a function in the enclave program, including code, global vari-
ables, constants, input arguments, stack frame, and heap. The-
orem 4.1 only imposes restrictions on writing Secret-tagged
values, leading to two design options: simply confining writes
of secrets to the Zone or conversely inspecting values written
outside the Zone as NotSecret. Confining writes of secrets
with a well-constructed data type can achieve NOLEAKAGE,
while software analysis tools can verify that values irrelevant
to secrets are written outside the Zone. For secrets within the
Zone, we can devise a comprehensive zerorize mechanism to
erase all residual values regardless of security tags, including
the stack frame, heap, and mutable global variables. Since
the ciphertext is not secret, the last procedure in the task can
encrypt the result and store it outside the Zone, and the en-
crypted result can be safely returned while the residual secrets
are thoroughly erased. For multi-threaded enclave programs
with no global variables and critical procedures that satisfy
PoBF constraints, the program is PoBF-compliant.

5 PoBF-Compliant Framework

According to the formally proven security constraints, we
design and implement a PoBF-Compliant Framework (PoCF).
As illustrated in § 2, the framework can load CC Tasks sub-
mitted by developers, and allow users (i.e., data providers) to
securely input their private data into the selected task within
a secure enclave. Our design objectives, guided by the PoBF
model, are separated into security requirements (SR) and aux-
iliary requirements (AR) as outlined below. It is important
to note that all plaintext data from users is considered secret,
while ciphertext cannot pose a threat to sensitive information
under secure encryption so it is not secret.

SR1 Privacy leakage is statically detected for the enclave.
SR2 Secret residue is zeroized in all functions.
SR3 The CC Task meets the PoBF requirements (i.e.,

NOLEAKAGE and NORESIDUE) and is verifiable to the
framework deployer.

Cloud
Hardware TEE

Deploy
Platform
Admin

PoCF Enclave

PoCF Library

CC Task
Submit

Developer

Attestation Data
Provider

Verification
PoCF

Verifier

Figure 2: Architecture overview of PoCF.

SR4 PoBF compliance of the framework with CC Task is
verifiable and attestable to users..

AR1 Minimal modifications for the CC Task code are re-
quired.

AR2 Different hardware TEEs are supported.

5.1 Overview
The design of PoCF and its interactions with stakeholders
involved in CC are depicted in Figure 2. Specifically, PoCF is
composed of four major components:

• PoCF Library: a hardware TEE-agnostic CCaaS library
that integrates the core workflow as a state machine and
high-level interfaces for confidential computing, as well
as their annotated specifications.

• CC Task: a function conducting the actual confidential
computing task that is invoked in a FaaS manner. It can
be submitted by a third-party developer.

• PoCF Encalve: a hardware TEE-specific enclave pro-
gram built on top of the PoCF Library with CC Task. It
implements the interfaces specified by the library, such
as remote attestation and encryption. It also manages the
input from the untrusted source and output to the data
provider. The enclave should satisfy NOLEAKAGE and
NORESIDUE requirements.

• PoCF Verifier: a tool that helps the platform deployers
and data providers verify PoBF-compliance of the PoCF
Enclave code, including CC Task and the PoCF Library.

Before the data provider initiates a task on the CCaaS
framework, some preliminary steps must be taken. After the
developer submits the CC Task, the platform administrator
compiles the CC Task code along with the PoCF Enclave and
deploys the service within the hardware TEE on the cloud.
Since the platform deployer is not trusted, the data provider
then verifies the (remote) enclave. Specifically, the source
code of the the PoCF Enclave and CC Task is released and
verified by the data provider using the PoCF Verifier, and
the enclave measurement could be obtained by rebuilding
the enclave binary (or image in VM-based TEE). After these
preparatory steps, the data provider is convinced that remote
enclaves with the calculated measurement cannot threaten her
data privacy. In the service iteration, the data provider first
conducts remote attestation and establishes a secure channel

with the enclave, confirming that the measurement of the ser-
vice hosted on the cloud matches what has been verified and
calculated by herself. The attestation report and verification
result together serve as the “proof” to the data provider, guar-
anteeing that the enclave is not able to threaten her private
data. Once trust is established between the data provider and
the enclave service, the following steps in the CC workflow
depicted in Figure 1 can be performed.

The design fulfills AR2 since the PoCF Library is platform-
independent. We also show that little modification is needed
for porting a CC Task into the enclave by an example illus-
trated in § 7.2. How SR1 and SR2 are satisfied are discussed
respectively in the following subsections and proved in § 7.1.
Nevertheless, they both rely on the integrity of the workflow,
which is enforced by the PoCF Library and Rust. All these
security building blocks are also verified by the PoCF Verifier,
which meets SR3 and SR4. We defer the detailed discussions
on verification to § 6.3 after presenting our implementation in
detail. Besides, we also discuss how to leverage the confiden-
tial computing ecosystem to protect proprietary algorithms
(i.e., verify the CC Task code without releasing it) in § 6.

5.2 The PoCF Library
The core library of PoCF is composed of three primary compo-
nents: 1) a state machine that upholds CC workflow integrity,
2) concurrency support achieved by eradicating of shared
states, and 3) a formal delineation of the state machine.

The State Machine and State Transition. The PoCF Library
operates as the cornerstone for CCaaS frameworks across var-
ious TEEs. It fortifies CC workflow integrity and facilitates
the enforcement of Zerorize. The library outlines a state
machine that illustrates the workflow according to Figure 1.
The detailed state transitions of CCaaS is depicted in Fig-
ure 3. Their informal and formal semantics are presented in
Appendix A (see Table 6 and Figure 10). The key and data
(abbreviated as K and D in the figure) also have associated
states aligned with the task state, and their state transitions
are also dictated within the library. Atop the state machine,
the library designates a set of interfaces (i.e., state transition
functions) and their contracts concerning the states (i.e., their
expected behaviors and trait bounds). The interfaces are tai-
lored to be implemented in TEE-specific enclaves, whereas
the contracts are constraints that must be satisfied by the en-
clave. For instance, establish_channel() must be invoked
in the Initialized task to establish a secure channel. The
functions are realized in the PoCF Enclave, utilizing TEE-
specific APIs (e.g., remote attestation). Nevertheless, we still
need a formal specification that narrates the detailed seman-
tics of the state machine, enabling its verification to ascertain
correct implementations. This is critical because merely actu-
alizing these interfaces does not assure their alignment with
the specification, e.g., bugs could be inadvertently introduced
by the developer.

Workflow Integrity. The PoCF Library must obstruct arbi-
trary invocation sequences of transition functions (e.g., return-
ing results before encryption) by enforcing workflow integrity.
Workflow integrity is based on but exceeds execution integrity.
While execution integrity assures the soundness of the control
flow graph (CFG), workflow integrity also stipulates the se-
quence of steps in CCaaS workflow (e.g., the result is initially
encrypted, followed by its delivery to the data provider). If
control flow integrity (CFI) is enforced, the execution integrity
of the whole workflow can then be guaranteed by adhering
to the contracts. Our abstract enclave model implicitly ne-
cessitates CFI and memory safety because it circumvents
architectural details, particularly the behaviors of the pointer.
Consequently, CFI is an implicit prerequisite for PoCF.

Concurrency. Our state machine fosters concurrency by de-
liberately circumventing shared state, a strategy inspired by
systems such as Erlang and Medusa renowned for enabling
concurrent execution [21, 85]. As a result, provided that the
implementation ensures thread safety (e.g., through the lan-
guage’s runtime), a multi-threaded enclave service can operate
concurrently without infringing upon data privacy.

5.3 Preventing Privacy Leakage

As highlighted in § 4.2, privacy leakage is considered as the
disclosure of sensitive data to unconfined areas (i.e., data la-
beled as Secret being revealed in a non-Zone area). Such a
scenario can arise due to a deliberate leak created by a malev-
olent developer or by capitalizing on the enclave’s vulnerabili-
ties. As a result, an attacker may partially or fully compromise
data confidentiality. Therefore, in alignment with the design
principles summarized in § 4, it is imperative that all the val-
ues being written to areas outside the Zone are not tagged
Secret. Techniques such as information flow control [66]
or taint analysis could be employed on enclave programs to
guarantee that Secret-tagged variables are contained within
the Zone. Potential leakage through edge functions, such as
OCALL in Intel SGX, can be mitigated by such techniques.
As edge functions serve as interfaces between the untrusted
world and the enclave, so CC Tasks can embed the secret into
the argument(s) of edge function calls to induce potential pri-
vacy leakage. To counter these security risks, we could either
disallow all edge function calls in CC Tasks or verify that
the arguments of these functions are not tainted by secrets.
Additionally, the PoCF Enclave necessitates CFI and memory
safety protections to prevent memory errors from being ex-
ploited to pilfer secrets, which are the same as the protections
in the PoCF Library. These measures together fulfill SR1.

5.4 Scrubbing Secret Residue

The term “residue” pertains to changes on the storable (e.g., al-
terations of heap values) that occurs after a function has been

establish_channel()

receive_data()

Channel
Established

decrypt_data()

cc_compute()

Data
Received

private_compute()

Data
Decrypted

encrypt_result()

Result
Decrypted

take_result()
Result

Encrypted

Finished

Initialized
K: Uninitialized
D: Uninitialized

K: AllowedTwice
D: Uninitialized

K: AllowedTwice
D: EncryptedInput

K: AllowedOnce
D: DecryptedInput

K: AllowedOnce
D: DecryptedOutput

K: Invalid
D: EncryptedOutput

K: Invalid
D: Invalid

Key States
Uninitialized
AllowedTwice
AllowedOnce
Invalid

Data states
Uninitialized
EncryptedInput
DecryptedInput
DecryptedOutput
EncryptedOutput
Invalid

Figure 3: State transitions of PoCF task and associated key and data.

executed, where “storable” includes stack, heap, global vari-
ables, and external storage, which map to low-level hardware
components such as memory, register, and disk. Neglected
residue presents a risk. For example, inadequately cleared
heaps used for storing plaintext human genomic data could
allow attackers to purloin secrets by raw memory accesses.
Nevertheless, for ephemeral enclaves which serve a single
user in the CCaaS workflow and are used only once, the pri-
mary focus is on adhering to the NOLEAKAGE requirement,
as these enclaves are entirely dismantled after use. The state
machine of the PoCF Library, in conjunction with hardware
TEEs, ensures the destruction of the enclaves, thus thwarting
any potential leaks of sensitive data via memory encryption.
Even if the encrypted memory remains uncleared, the attacker
cannot glean secret information from the ciphertext. There-
fore, threats caused by residue are eliminated via the destruc-
tion of the ephemeral enclave, thus satisfying NOLEAKAGE.

However, it is essential to note that while ephemeral en-
clave programs meet the NORESIDUE requirement, they do
not feasibly support persistent services. This is because the
enclave needs to be repeatedly initialized and destroyed for
each new user request, resulting in substantial overhead.

Hence, when dealing with persistent enclaves serving mul-
tiple users, supplementary measures need to be enacted to
tackle residue issues. As suggested in Theorem 4.2, one ap-
proach to mitigating residue involves incorporating a “ze-
rorize” procedure immediately after critical procedures. By
adapting the functions of enclave programs to clear sensitive
data, the NORESIDUE requirement can be satisfied. Neverthe-
less, it is crucial to underscore that Theorem 4.2 assumes the
eradication of potential leakage. Therefore, the scrubbing of
privacy residue is only effective if the NOLEAKAGE require-
ment is already satisfied.

For enclave programs, three aspects warrant consideration.
First, the heap space allocated within or directly controlled
by the function (e.g., reference to an object) that may store
secrets, must be appropriately zeroized at the end of the func-
tion. Second, the function’s stack frame could also contain
secrets. This area typically remains uncleared before return-
ing to the caller function and therefore, must be cleaned at the

termination of the callee function. Finally, globally accessible
locations (e.g., global variables) may also exist, However, as
PoCF eschews these places, they do not demand our attention.
Consequently, SR2 is satisfied by meticulously clearing the
aforementioned areas.

6 Implementation and Verification of PoCF

This section delves into the implementation details of the
PoCF Library and TEE-specific enclaves, along with their ver-
ification of PoBF-compliance. The PoCF Library is a general
CCaaS workflow library compatible with various hardware
TEEs. We also build the PoCF Enclaves upon the PoCF Li-
brary in SGX and SEV, representing the vastly deployed TEEs.
The library and the enclave program are both written in Rust, a
programming language that guarantees our implementation is
free from memory errors. The PoCF Verifier is prototyped in
Python, leveraging an abstract interpreter named MIRAI [36],
the Prusti verifier, and the Rust compiler. The section also
demonstrates the programming model and verification of the
workflow from the viewpoint of the data provider.

6.1 TEE-agnostic Library

Implementation. According to the design, the library real-
izes a state machine and corresponding contracts. Benefiting
from Rust’s powerful type system, we encode a state machine
with transition functions in typestate [77], where states are
represented as generic parameters in pure Rust data structures
(i.e., struct). With contracts (i.e., stipulations on the data
structures) being described in structs’ trait bounds, the re-
quired properties of the CCaaS workflow could be guaranteed
by the type checker. Further, the Rust compiler carries out
type checking statically, ensuring that the state machine and
contracts are enforced with minimal runtime overhead.

Listing 1 showcases the code for Task, which incorpo-
rates the state machine as defined in Figure 3. Task has three
generic parameters, S, K, and D, signifying the task’s state, the
key type, and the data type, respectively. This implementation
not only models the state machine of the CCaaS workflow

but also the key and data tied to the task. The state of the
key and data (K and D) are dependent on the state of the task
S, so their transition possibilities are restricted accordingly.
For example, when the task is in ResultDecrypted state, the
key is AllowedOnce, meaning it can only be used once. Trait
bounds serve as a contract for the generic types to implement
the required interfaces. For instance, the key type must imple-
ment Zerorize which writes zeros on the memory housing it
when it is Invalidated. By implementing transition functions
on the corresponding typestates with generics satisfying the
contract, the state machine can be trustworthily constructed.

Listing 1: Typestate abstraction and specification.
1 pub struct Task<S, K, D> where
2 S: TaskState + DataState + KeyState,
3 K: Zeroize + Default, D: EncDec<K>,
4 <S as DataState>::State: DState,
5 <S as KeyState>::State: KState,
6 {
7 data: Data<<S as DataState>::State, D, K>,
8 key: Key<K, <S as KeyState>::State>,
9 _state: S,

10 }
11

12 pub trait TaskState {
13 #[pure]
14 fn is_initialized(&self) -> bool {false}
15 #[pure]
16 fn is_finished(&self) -> bool {false}
17 // Other similar functions are omitted.
18 }
19

20 pub struct Initialized;
21 #[refine_trait_spec]
22 impl TaskState for Initialized {
23 #[pure]
24 #[ensures(result == true)]
25 fn is_initialized(&self) -> bool {true}
26 }
27

28 #[ensures((&result)._state.is_allowed_once())]
29 // Other similar specifications are omitted
30 pub fn cc_compute(self) ->
31 Task<ResultEncrypted,Invalid,EncryptedOutput>;

Note that some states and transition functions in Figure 3
are represented by dotted lines, indicating they are private.
These interfaces and typestates are exclusively visible to the
PoCF Library but not to dependent artifacts at the language
level. By capitalizing on this access control language feature,
we can avert explicit access to sensitive data (e.g., task.key)
and make private transitions atomic for the caller. Moreover,
all fields in Task are all private, with the only visible function
at DataReceived state being cc_compute(), which decrypts
input data, executes the CC Task, and encrypts the outputs.
This design obscures the states where the data is in plaintext,
reducing the risk of data exposure. Additionally, as the Task
struct does not include shared resources, it is self-contained
and can be safely used in concurrent enclaves.

However, language-level access control alone is insuffi-
cient to ensure the privacy of secrets, especially in memory-

unsafe languages like C. For instance, a direct dereference of
a pointer to Task results in direct access to raw data. So, the
TEE-specific enclave must mitigate such risks. We discuss
the solution in the next subsection.

Scrubbing Residue. The transition functions correspond to
the procedures in the PoBF formal model. The Task struct
manages residue automatically, as its transition functions take
itself as input and return a Task object in a new state, where
Zerorize() is invoked as specified in the trait bounds. Although
the state machine based on the typestate scrubs residue at the
language level, sensitive data may linger in memory. The con-
tent of a freed (e.g., by free() in libc) memory block may
still be partially recoverable by a raw pointer to that block, as
libc does not specify freed memory blocks to be zeroed out.
Therefore, we devise the Zerorize contract to handle residue.
Transition functions are instrumented to enforce that stacks
and registers except return values are cleared at the function
epilogue. As for the heap, we patch the corresponding deal-
locator (e.g., dealloc function in Rust SGX SDK) to ensure
that freed memories are zerorized. Besides, the protected Key
struct must implement the Zerorize trait, as it must be in-
validated before the task is Finished. This occurs when the
output is encrypted using the key. The Data type does not
need this contract since it can be encrypted in place, and the
ciphertext is not secret. Thus, the weak Residue is evaluated
as false in the transition functions.

Verification of the State Machine. Using the PoCF Library
alone cannot fully satisfy the security requirements for en-
clave programs. To bridge the gap between the design and the
implementation, we need a formal specification and mechani-
cally check it in accordance with the code. This is achieved
with Prusti [12], an automatic verification tool for Rust. We
implement the typestate-based state machine as structs with
associated traits (i.e., TaskState, KState, DState in List-
ing 1). To encode the specification, we write pure functions
serving as the contract to represent its current state (line 13-16
in Listing 1). These functions aid Prusti in the verification
of correctness, with which Prusti generate verification state-
ments and proves them for each state.

6.2 The PoCF Enclave

Implementation. The PoCF Enclave is responsible for ex-
ecuting CC tasks securely. It is built on top of the PoBF
Library with the CC Task code submitted by an untrusted
developer. The platform oversees TEE-specific operations
such as enclave initialization and remote attestation. The pro-
totypes are implemented on Intel SGX AMD SEV due to
their maturity. Adhering to the formal model that requires
execution integrity and memory safety to be enforced, the
SGX prototype utilizes Teaclave SGX SDK [86] and the SEV
prototype deploys the standard library. The PoCF Enclave
for SGX supports DCAP [47] and EPID [48] attestations,

and the SEV prototype uses Azure’s attestation service [18].
These functions establish a secure channel after conducting
remote attestation with the data provider. The SGX PoCF
Enclave’s implementation details will be mainly elaborated
upon due to its unique programming models, and the corre-
sponding SEV implementation removes the edge functions
with OS. For SGX, only one ECALL is realized to avoid re-
entrant attacks [32, 57], while there are verified OCALLs for
handling system functions with the untrusted OS. Although
it’s feasible to expose system interfaces directly to the CC
Task, it could lead to extensive code modifications since the
interfaces will be foreign functions that are challenging to
use and verify directly. To resolve this, we encapsulate the
system functions and macros with verification conditions. For
instance in SGX, the println!() macro for logging in the
CC task is wrapped using an OCALL, printf(), with a se-
curity level check predicate. These predicates are verified by
MIRAI statically. System function parameters can contain
secrets, and we now introduce our mitigation.

Preventing Leakage. Potential leakage locations are hard-
ware TEE-specific. In SGX, data may be transmitted from
the enclave to the untrusted world via edge calls (ECALLs
and OCALLs) and memory access, such as explicit writes
to memory outside the enclave. In SEV, network interfaces
may leak secrets. Therefore, we could either prohibit these
channels or impose restrictions (e.g., requiring encryption) on
them to forestall leakage. We assume that the allocators, such
as the allocator in tlibc in SGX, are safe (i.e., the allocated
memory block is entirely within the enclave). Given that no
pointers to the untrusted world can be legally initialized in
the trusted world in safe Rust, the only potential sources of
dangerous memory operations and pointers to the untrusted
world are from edge functions. For example, they may return
pointers to the untrusted world to the enclave. With only one
ECALL in SGX that returns encrypted results and cannot leak
sensitive data, we need to focus solely on edge functions, such
as OCALLs in SGX and network interfaces in SEV.

Verification for Edge Function Calls. The PoCF Enclave
code, including the CC Task, could trigger edge function calls.
We stipulate that the parameters of the edge calls must be
independent of secret and perform data flow tracking to vali-
date such properties. In the CC workflow, excluding the CC
Task where the code is untrusted, the tracking is carried out
by the typestate. In the untrusted CC Task, all sensitive data
structures such as Key and Data are tagged Secret when
initialized, and we verify that edge call parameters do not
contain the Secret tag. An abstract interpreter, MIRAI, is em-
ployed as the verifier. The tracking via MIRAI is based on
the Rust Mid-level IR and could be imprecise. We conduct an
evaluation on it in § 7.1. The Secret tag is propagated via
various operations (e.g., slicing a part of the user data), and the
tag is cleared upon the final encryption. Thus, MIRAI helps
verify that edge calls leak no secret. Indeed, secret-dependent

operations such as edge calls could potentially result in sen-
sitive data leaks. However, this type of side/covert-channel
is outside of our threat model, whereas we discuss tentative
mitigations in § 8.

6.3 The PoCF Verifier
The data provider verifies the authenticity of the enclave soft-
ware by rebuilding the enclave, acquiring its measurement,
and conducting remote attestation, provided the source code
is available. In cases where a proprietary algorithm is used in
the CC Task and its source code is not public, a trusted build
system can serve as a broker to verify the code and generate a
trusted measurement [40]. The code is encrypted and supplied
to the build system, which operates within a remotely attested
hardware TEE. Data providers can delegate the verification
job to the build system as it follows the steps to verify the
PoCF Enclave. If verification is successful, the enclave bina-
ry/image and its measurement are produced. The developer
and the data provider trust the build system after inspecting
its source code, plus that attestation guarantees that the build
system enclave is trusted, implying that the measurement of
the PoCF Enclave built by this system is also authentic. Fi-
nally, when the data provider is about to transmit the secret
to the PoCF Enclave, another remote attestation reassures the
data provider that the remote enclave is the one previously
built and verified by the trusted build system.

We now elaborate on how the verifier works. It leverages
the Rust compiler, Prusti verifier, and MIRAI to accomplish
the verification job. First, the Rust compiler checks mem-
ory and type safety. The PoCF Enclave forbids the use of
unsafe code in its source code, except for specific places
where encrypted input from the untrusted world is received
and converted to vectors in safe Rust. These operations must
be conducted through unsafe Rust but do not violate the
PoBF property since the ciphertext is not secret. The pro-
hibition of unsafe code prevents leakage via raw memory
operations. The type checker, on the other hand, ensures that
the state machine adheres to its contract. Second, Prusti guar-
antees the consistency of the typestate implementation with its
specifications. In consequence, the NORESIDUE requirement
is met since the Zerorize instrumentation can be executed
in accordance with the state machine’s specification. Finally,
MIRAI performs taint analysis based on abstract interpreta-
tion. Each edge call is verified to ensure its parameters are
not tagged Secret. The dependencies used by the PoCF En-
clave invoking edge functions can also be verified. The PoCF
Enclave only relies on the PoCF Library and a few third-party
libraries, all of which contain no system interfaces [87]. The
self-contained PoCF Library is written in pure Rust with-
out external modules, containing no external function calls.
Therefore, the dependencies of the PoCF Enclave thus require
no further verification to satisfy NOLEAKAGE.

Development under PoCF. From a CC Task programmer’s

viewpoint, they can develop functions in FaaS as a normal
Rust library. The only requirement is that the function must in-
put and output serializable data types (e.g., Vec<u8>), where
the data could be encrypted, decrypted, and transferred. The
programmer can also run the PoCF Verifier on their end or del-
egate verification to the trusted builder before serving users.

7 Evaluation

In this section, we conduct security and performance evalua-
tions of the PoCF implementations on Intel SGX and AMD
SEV. On the one hand, we inspect our system on security and
answer the question: does PoCF reaches its goals of security?
On the other hand, we analyze the overhead of the PoCF En-
clave and demonstrate its capability in real-world applications.
We also make comparisons with related artifacts.

7.1 Security Analysis
We first outline the proof of PoCF satisfying the PoBF require-
ments using the PoCF semantics (see Table 6 and Figure 10 in
Appendix). Then, we enumerate the threats that are mitigated
by PoCF. Last, we evaluate the accuracy of dataflow tracking.

Theorem 7.1. The PoCF prototypes satisfy NOLEAKAGE.

Proof Sketch. Following Theorem 4.1, we need to prove three
constraints. Firstly, trivially, the initial state does not contain
secrets. Secondly, the PoCF Verifier examines all edge func-
tion calls to guarantee that all stores of secrets cannot be
passed via parameters. Also, in SGX, safe Rust guarantees
that the enclave cannot write to untrusted memory, hence se-
cret values cannot exit the enclave. Thirdly, PoCF aborts upon
errors. Therefore, with the guarantee of control flow integrity
in safe Rust, the PoCF prototypes cannot leak secrets.

Theorem 7.2. The PoCF prototypes satisfy NORESIDUE.

Proof Sketch. To prove the theorem, we demonstrate that ev-
ery function is correctly instrumented. All locations other
than the return value that may store secrets should be prop-
erly zerorized. In safe Rust, residue can only persist on the
heap, stack, register, and global variables. The PoCF Enclave
has no global variables. The instrumented functions zerorizes
the stack and register at the epilogue, which is enforced by
the typestate. Finally, the modified allocator scrubs the mem-
ory used by the secrets on the heap when reclaiming objects.
Therefore, PoCF does not have secret residue.

Mitigated Threats. Table 3 summarizes the potential security
threats that are mitigated by the PoCF framework and cor-
responding solutions. The threats are categorized into three
classes accordingly: workflow integrity (WI), leakage (L),
and residue (R). Various mitigation strategies are applied to
handle these threats, and some mitigations are interleaved. For

Table 3: Threats mitigated in PoCF prototypes.

Cat. Description Mitigated by
WI Memory error in enclave Safe Rust
WI Control flow hijacking Rust Compiler
WI Workflow tampering Typestate
WI Race condition Rust Compiler & Typestate
L Leak via raw memory write Safe Rust
L Leak via edge calls Taint Analysis
L Unauthorized access Typestate & Language Isolation
R Residue in heap Zerorize
R Residue in stack/register Instrumentation & Zerorize

example, zerorize is based on the typestate which is verified
according to formal specifications.

Accuracy in Dataflow Tracking. Dataflow tracking in the
state transitions, other than the CC Task, is accurate and se-
cure as secrets are not accessible elsewhere in PoCF. The
tracking here is performed and guaranteed by the type system.
In the CC Task, while the key is invisible so its tracking is
still accurate, the data can be referenced so we apply taint
analysis to it. Therefore, we leverage MIRAI and analyze its
accuracy via a series of tests covering features of Rust [36].
The evaluation results are summarized in Table 4.

MIRAI is accurate in modeling tag propagation at the com-
putations, trait features, and in different control flows. How-
ever, it could fail when dealing with pointers and specific
structs that need to propagate tags from their fields. This is
attributed to the design flaw in MIRAI’s heap model [1, 2],
and we believe that adopting the methodology from [20] may
enhance the accuracy. However, since safe Rust disallows raw
pointer operations and PoCF only permits safe Rust in CC
Task code, the PoCF Verifier works in most cases.

7.2 Performance Evaluation
We conduct evaluations on both Intel SGX and AMD SEV
platforms. The SGX server equips dual Xeon 5318S (24 cores
each, hyperthreading enabled) CPU, 256GB RAM (64GB
total EPC), and 2TB SSD. It runs Ubuntu 20.04.5 LTS with
Linux 6.0, SGX SDK v2.17, and SGX DCAP v1.15. The
SEV server is an Azure DC16ads_v5 instance, which has
16 vCPUs, 64 GB RAM, and 256 GB SSD. It runs Ubuntu
22.04.2 LTS with Linux 5.15. To minimize the disturbance of
the network, the data provider client program is deployed on
the same machine as the PoCF Enclave.

Microbenchmarks. We unveil the performance overhead
of PoCF protections via two microbenchmarks. An identity
function is used as the CC Task to understand the perfor-
mance of each component and of the whole workflow under
different input sizes and various settings. We also evaluate
the performance on a modified Rust implementation of Poly-
bench [53,71], a benchmark suite with computation-intensive
tasks such as matrix multiplication. To weigh the effect of
PoCF on computation, there is no input for Polybench eval-

Table 4: The precision test of MIRAI categorized by Rust features.

Test Name Covered Rust Features Expected Actual Missed Feature(s)
untrusted_input Traits, generics, and arrays ✓ ✓ /
control_flows Loops, branches, and pattern matches ✗: 1; ◦: 5 ◦: 6 /

ownership_transfer Ownership and borrow check ✗: 2 ✗: 2 /
pointers Smart and raw pointers ✗: 4 ✗: 1 Leakage by Rc<T>, Box<T>, and *const T.

complex_structs Collections and structs ✗: 4 ✗:1 Tag propagation from field to the whole struct
All the tests were analyzed by MIRAI using its strictest analysis level, i.e., MIRAI_FLAG=diag=paranoid.

✓: No data leakage; ✗: Has data leakage; ◦: Possible data leakage. The number behind “✗” or “◦” denotes the number of data leakages.

(a) Polybench: Performance of POCF and NATIVE on SGX.

(b) Polybench: Performance of POCF and NATIVE on SEV.

Figure 4: Performance of Polybench microbenchmarks.

1KB 10KB
100KB 1MB 10MB

100MB

Data Size

100

105

1010

1015

1020

1025

T
im

e
(u

s)

Decryption

CC Task

Encryption

Channel Creation

Data Transfer

(a) Cost breakup of PoCF on SGX.

1KB 10KB
100KB 1MB 10MB

100MB

Data Size

100

105

1010

1015

1020

1025

T
im

e
(u

s)

Decryption

CC Task

Encryption

Channel Creation

Data Transfer

(b) Cost breakup of PoCF on SEV.

Figure 5: Identity task: Performance breakup of PoCF.

20 21 22 23 24 25 26 27 28

Number of Pages

10−2

10−1

100

101

102

103

104

105

106

T
im

e
(m

s)

input = 100KB

input = 100MB

(a) Service time on SGX.

20 21 22 23 24 25 26 27 28

Number of Pages

200

400

600

800

1000

1200

T
im

e
(m

s)

input = 100KB

input = 100MB

(b) Service time on SEV.

Figure 6: Service time under the different cleared pages.

uations. The results can be found in Table 5, Figure 4, and
Figure 5, with 10 repetitions of each subtask in each experi-
ment setting. We measure the elapsed service time inside the
enclave for the identity task and the elapsed time to execute
the CC Task in Polybench. NATIVE service runs inside an
SGX enclave or encrypted VM in SEV without PoCF miti-
gations, while POCF denotes our system in which Zerorize
instrumentation is configured to clear at most 20 pages on the
stack at function epilogues. The overhead is negligible, with
average overheads in the identity task and Polybench being
1.24% and 0.28% respectively on SGX, and 0.86% and 0.94%
on SEV. Such overheads imply PoCF protections cause a mi-
nor performance downgrade in computation. We also observe
that the time spent on establishing a trusted channel is less
relevant to the data size. However, the cost increases slowly
with input sizes < 10MB but linearly in 10-100MB, primarily
due to the proportional growth of data-dependent workloads.

Overhead Analysis. Static checks (i.e., analysis of compiler

Table 5: Identity Task: Time (ms) under Different Data Sizes.

Config 1KB 10KB 100KB 1MB 10MB 100MB
NATIVE X 275.8 281.1 296.3 536.7 3026.5 28018.3
P W/O T X 278.3 280.4 298.6 541.1 3033.9 28022.9
P W/ T X 277.3 287.4 301.7 545.0 3043.7 28215.0
NATIVE V 489.1 487.3 449.7 495.6 502.0 923.3
POCF V 489.5 492.3 454.4 499.8 506.5 934.8

P: PoCF without data flow tracking; T data flow tracking; X: SGX; V: SEV

and MIRAI) incur no runtime overhead. Comparing the re-
sults of P W/O T X and P W/ T X in Table 5, we observe
that typestate transition only incurs 0.82% performance degra-
dation on average, which is very minor. Another portion of
runtime overhead in PoCF comes from residue cleanup (i.e.,
zerorizing the stack and register), which incurs 0.42% over-
head by comparing P W/O T X and NATIVE X. As shown
in Figure 6, zerorizing more pages does not spend more time
significantly, and we can even set it to the maximum stack
size. In our evaluations, we set the number of cleared pages
as 20 because it is enough for the benchmarks.

Macrobenchmarks. We port three the real-world applica-
tions to PoCF and other well-maintained SGX middlewares1.
POCF and NATIVE are the same as those in the microben-
mark. LINUX is the setting where NATIVE is executed in the
normal world without using SGX. GRAMINE2 is a C-based
LibOS that supports unmodified binaries in SGX enclave [14].
OCCLUM is a Rust-based LibOS [74]. ENARX can host We-
bAssembly module for multiple TEE backends [13]. We use
the release version of these middlewares: Gramine v1.3.1-1,
Occlum 0.29.4-1, and Enarx 0.6.4. For all these evaluation
settings other than ENARX and LINUX where the enclave
size cannot be configured, we set the maximum enclave size
to 8GB 3 and the maximum thread number to 16. We mea-
sure the elapsed time from the data provider’s end since the
LibOS is transparent to the process. All the steps in CCaaS
are counted, except for LINUX where attestation cannot be
performed. ENARX does not support multi-threading, so we
omit its multi-threading performance.
• CPU-bound: AI Inference. We use TVM to compile
ResNet152 Model [17] as a library and link it to our frame-
work, The Python script achieves this task in 125 lines of code
(LoC), and the Rust function of the ResNet CC Task contains
50 LoC. We believe such porting effort is acceptable. It takes
600 KB ndarray input and outputs a label.
• Memory-bound: FASTA. We port the FASTA format ge-
nomic sequence generation algorithm [86]. This algorithm
generates DNA sequences by copying from a given sequence
and weighted random selection from two alphabets. The input
and output sizes are both 4.4MB FASTA format sequences.

1We do not evaluate middlewares on SEV since it has no compatibility
concern as SGX, hence few middlewares support SEV.

2Gramine is previously called Graphene [23].
3For Occlum, an additional 320MB memory is reserved for LibOS.

L
in

ux

S
G

X
-N

at
iv

e

S
G

X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

S
E

V
-N

at
iv

e

S
E

V
-P

oC
F

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e
(m

s)

(a) Single-threaded.

L
in

ux

S
G

X
-N

at
iv

e

S
G

X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

S
E

V
-N

at
iv

e

S
E

V
-P

oC
F

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

T
im

e
(s

)
us

ed
p

er
re

qu
es

t

(b) Multi-threaded.

Figure 7: Macrobenchmark: AI inference execution time.

L
in

ux

S
G

X
-N

at
iv

e

S
G

X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

S
E

V
-N

at
iv

e

S
E

V
-P

oC
F

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
(s

)
(a) Single-threaded.

L
in

ux

S
G

X
-N

at
iv

e

S
G

X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

S
E

V
-N

at
iv

e

S
E

V
-P

oC
F

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

T
im

e
(s

)
us

ed
p

er
re

qu
es

t

(b) Multi-threaded.

Figure 8: Macrobenchmark: FASTA execution time.

• IO- and memory- bound: In-memory key-value database
(KVDB). We use hashbrown [80], a Rust port of Google Swiss
Table, to build an in-memory KVDB. We leverage YCSB [27],
a standard benchmark for KV stores, to generate datasets and
workloads in evaluations. The dataset contains 220 KV of
8B keys paired with 1KB value, and the whole dataset is
1GB. We pick two workloads: A contains 50% reads and 50%
writes, while C contains 100% reads. These two representative
workloads are the lower and upper bounds for read-write
ratios in YCSB, demonstrating a real-world deployment.

We depict the results of AI inference, FASTA, and KVDB
in Figure 7, Figure 8 and Figure 9, respectively. In multi-
threading scenarios of AI inference and FASTA tasks, we
present the average service time per request after serving all
four data providers. By comparing NATIVE with our solu-
tion, we confirm again that the overhead induced by PoCF
protections is minor. In the KVDB payload where eight data
providers dispatch queries, POCF incurs 1.12% and 6.92%
overhead in single-thread mode and 1.98% and 4.95% over-
head in multi-threading compared to NATIVE, respectively
on SGX and SEV. In the AI inference task, we notice that
PoCF has comparable performance with other TEE middle-
wares, both in single-threaded and multi-threaded scenarios
(Figure 7). However, in the FASTA task, LibOSes-based solu-
tions outperform PoCF, and their advantages are greater than
those in the AI inference task. In KVDB payloads, LibOSes
perform much better than SGX PoCF. We attribute this to data
dependency and lack of I/O optimization in our SGX imple-
mentation, while SEV necessitates no network optimization.

L
in

ux

S
G

X
-N

at
iv

e

S
G

X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

S
E

V
-N

at
iv

e

S
E

V
-P

oC
F

0

20

40

60

80

100

120

140

160

L
at

en
cy

(u
s)

YCSB Workload A

YCSB Workload C

(a) Single-Thread Latency.

L
in

ux

S
G

X
-N

at
iv

e

S
G

X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

S
E

V
-N

at
iv

e

S
E

V
-P

oC
F

0

100

200

300

400

500

T
hr

ou
gh

pu
t

(K
O

ps
)

YCSB Workload A

YCSB Workload C

(b) Single-Thread Throughput.

L
in

ux

S
G

X
-N

at
iv

e

S
G

X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

S
E

V
-N

at
iv

e

S
E

V
-P

oC
F

0

10

20

30

40

50

60

L
at

en
cy

(u
s)

YCSB Workload A

YCSB Workload C

(c) Multi-Thread Latency.

L
in

ux

S
G

X
-N

at
iv

e

S
G

X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

S
E

V
-N

at
iv

e

S
E

V
-P

oC
F

0

50

100

150

200

250

300

350

400

T
hr

ou
gh

pu
t

(K
O

ps
)

YCSB Workload A

YCSB Workload C

(d) Multi-Thread Throughput.

Figure 9: Macrobenchmark: KVDB latency & throughput.

For example, Gramine and Occlum have rigorous optimiza-
tions on network I/O [15, 23]. We also observe that Occlum’s
performance downgrades in KVDB’s multi-threading scenar-
ios (Figure 9(c) and Figure 9(a)) [16]. Gramine and SEV ex-
perienced the same problem but to a less extent (Figure 9(d)).
It may be caused by context switches, which offset the per-
formance benefited from concurrency. However, this gap in
single-threaded scenarios is significantly narrowed by concur-
rency. Our future work includes I/O optimizations.

8 Discussion

Other Attack Vectors. Other attack vectors, such as side-
channel attacks, although not within the scope of this work,
can still lead to privacy breaches. However, different side-
channels usually require orthogonal mitigations. For ex-
ample, timing side-channels can be addressed by imple-
menting constant-time operations [6]. MIRAI can also ver-
ify the constant-time property for the Rust code. For at-
tacks on page [83, 89, 91] and micro-architectural side-
channels [24, 73, 81, 82], separate low-level mechanisms can
be utilized, such as binary rewriting [88] and instrumen-
tation [49, 62]. Although these low-level mitigations can
hardly be verified at the programming language level, the
data provider can still verify that the remote enclave applies
these defenses via remote attestation. Another potential threat
is the denial of service (DoS) attack. If the enclave is sus-
pended during the service (e.g., caused by an AEX without
resuming in SGX), the residue may not be wiped out in this
service cycle. However, DoS attacks cannot threaten privacy,

as long as memory encryption is not compromised.

Rust Code Verfication. Verification on Rust code is still at an
early stage. We tested many verification tools for Rust. Prusti
strikes a balance between usability and complexity but can fail
to verify some of the Rust features like nested generics and
complex trait objects; the verification also takes a longer time.
Rustbelt [54] reached its end of life in 2021 and no longer
supports newer versions of Rust. Creusot [33], however, is
strictly tied to a specific version of the nightly Rust toolchain
that conflicts with Rust SGX SDK. Creusot’s contracts are
also intrusive, meaning that we need to write specifications
for library functions. Aneaes [45] uses lambda calculus but is
immature and does not support some common Rust features.

Another limitation is the imprecision of taint analysis tools.
The inherent complexity plus the intricate design of Rust
makes taint analysis awkward in dealing with some cases. For
example, when a struct has tainted fields, it would not be prop-
agated with a taint tag. Additionally, the approximation and
modeling approaches adopted by taint analysis tools might be
imprecise, resulting in issues such as over-tainting [55].

9 Related Work

Formal Models and Verification. Moat builds formal mod-
els for x86 with SGX instructions and the adversary [76]. It
also builds a type system satisfying confidentiality. BesFS
implements a series of filesystem interfaces for enclaves and
proved its safety in Coq [75]. Subramanyan et al. also estab-
lish a model for secure remote execution of enclaves [78].
Komodo provides a verified software monitor implementing
enclaves [39]. However, their code can hardly be utilized in
real-world TEEs because of the lack of runtime support of the
verification languages used to prove the properties. Besides,
those models cannot be directly applied in CCaaS.

CCaaS Frameworks. In recent years, several frameworks has
emerged to back CCaaS. Apache Teaclave, a FaaS platform,
takes input from multiple parties to perform CC [79]. Enarx,
Veracruz, and Oak integrate WebAssembly support to conduct
confidential computing tasks [13, 72, 84]. There are also a lot
of academia and industry projects making an effort to run
unmodified binaries by offering a runtime [4,23,31,46,60,74,
90]. However, these middlewares either bypass the privacy
concerns or fail to provide a systematic solution to users.

10 Conclusion

This paper presents PoBF, a privacy protection principle for
confidential computing, and PoCF, a PoBF-compliant Frame-
work prototype. Leveraging Rust’s safety features and type
system, we design a state machine for CCaaS based on type-
state, which supports different hardware TEEs. Besides, the
PoCF verifier is realized to guarantee two PoBF requirements

are satisfied. The evaluations show that PoCF protections
incur minor runtime overhead to achieve security goals.

Acknowledgements

We sincerely thank our shepherd and the anonymous review-
ers for their valuable feedback, and Weijie Liu for the tech-
nical discussions. Authors from Indiana University Bloom-
ington are supported in part by NSF-1838083, 2207231, and
NIH R01HG010798.

References
[1] Design documentation of MIRAI. https://

github.com/facebookexperimental/MIRAI/blob/
41b3c946163df3faf543667b64448bd2abc3357f/
documentation/TagAnalysis.md, 2022.

[2] How to verify tag when type changes? https://
github.com/facebookexperimental/MIRAI/issues/1131#
issuecomment-1039643992, 2022.

[3] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin,
and Byoungyoung Lee. Obfuscuro: A commodity obfuscation engine
on intel sgx. In Network and Distributed System Security Symposium,
2019.

[4] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro Fonseca, and
Byoungyoung Lee. Chancel: efficient multi-client isolation under
adversarial programs. In Annual Network and Distributed System
Security Symposium (NDSS), 2021.

[5] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and
Byoungyoung Lee. Obliviate: A data oblivious filesystem for intel sgx.
In NDSS, 2018.

[6] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Du-
pressoir, and Michael Emmi. Verifying constant-time implementations.
In USENIX Security Symposium, volume 16, pages 53–70, 2016.

[7] AMD. Secure encrypted virtualization api version 0.24.
https://www.amd.com/system/files/TechDocs/55766_
SEV-KM_API_Specification.pdf, Apr. 2020.

[8] ARM. Arm security technology building a secure system using trust-
zone technology. https://developer.arm.com/documentation/
PRD29-GENC-009492/c?lang=en, Apr. 2009.

[9] ARM. Arm cca security model 1.0. https://developer.arm.com/
documentation/DEN0096/latest, Feb. 2021.

[10] ARM. Arm confidential compute architecture software stack.
https://developer.arm.com/documentation/den0127/0100/,
Sep. 2021.

[11] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, An-
dre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Rüdiger
Kapitza, Peter Pietzuch, and Christof Fetzer. SCONE: Secure linux
containers with intel SGX. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016.

[12] Vytautas Astrauskas, Aurel Bílỳ, Jonáš Fiala, Zachary Grannan,
Christoph Matheja, Peter Müller, Federico Poli, and Alexander J Sum-
mers. The prusti project: Formal verification for rust. In NASA Formal
Methods: 14th International Symposium, NFM 2022, Pasadena, CA,
USA, May 24–27, 2022, Proceedings, pages 88–108. Springer, 2022.

[13] The Enarx Authors. The enarx project. https://github.com/enarx/
enarx, 2022.

[14] The Gramine Authors. The gramine project. https://
gramineproject.io, 2022.

[15] The Occlum Authors. Optimize the perf of sendmsg/recvmsg by al-
locating untrusted buffers. https://github.com/occlum/occlum/
commit/e352a190ea63cc9370371026e9bf620f92b24b41, 2020.

[16] The Occlum Authors. Network performance tuning record. https:
//github.com/occlum/occlum/issues/1092, 2022.

[17] The ONNX Authors. Resnet152 model in the form of
onnx. https://github.com/onnx/models/blob/main/vision/
classification/resnet/model/resnet152-v1-7.onnx, 2020.

[18] Microsoft Azure. Attestation services | microsoft azure. https://
azure.microsoft.com/en-us/products/azure-attestation.

[19] Springer security and policy compliance platform - baidu ai cloud.
https://cloud.baidu.com/product/springer.html, 2022.

[20] Abhiram Balasubramanian, Marek S Baranowski, Anton Burtsev, Au-
rojit Panda, Zvonimir Rakamarić, and Leonid Ryzhyk. System pro-
gramming in rust: Beyond safety. In Proceedings of the 16th workshop
on hot topics in operating systems, pages 156–161, 2017.

[21] Thomas W Barr and Scott Rixner. Medusa: Managing concurrency
and communication in embedded systems. In 2014 USENIX Annual
Technical Conference (USENIX ATC 14), pages 439–450, 2014.

[22] Robert Buhren, Christian Werling, and Jean-Pierre Seifert. Insecure
until proven updated: analyzing amd sev’s remote attestation. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 1087–1099, 2019.

[23] Chia che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A
practical library OS for unmodified applications on SGX. In 2017
USENIX Annual Technical Conference (USENIX ATC 17), pages 645–
658. USENIX Association, 2017.

[24] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. Sgxpectre: Stealing intel secrets from sgx enclaves
via speculative execution. In 2019 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 142–157. IEEE, 2019.

[25] Hongbo Chen, Hiroki H Chen, and Mingshen Sun. ya0guang/pobf:
Proof of being fogotten (pobf) and pobf-compliant framework (pocf)
prototypes. https://github.com/ya0guang/PoBF, 2023.

[26] Confidential Computing Consortium. Confidential computing:
Hardware-based trusted execution for applications and data. Tech-
nical report, Confidential Computing Consortium, jan 2021.

[27] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM symposium on Cloud computing, pages
143–154, 2010.

[28] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology
ePrint Archive, 2016.

[29] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approxi-
mation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 238–252,
1977.

[30] Patrick Cousot and Radhia Cousot. Systematic design of program anal-
ysis frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 269–282,
1979.

[31] Jinhua Cui, Shweta Shinde, Satyaki Sen, Prateek Saxena, and Pinghai
Yuan. Dynamic binary translation for sgx enclaves. ACM Transactions
on Privacy and Security, 25(4):1–40, 2022.

[32] Jinhua Cui, Jason Zhijingcheng Yu, Shweta Shinde, Prateek Saxena,
and Zhiping Cai. Smashex: Smashing sgx enclaves using exceptions.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 779–793, 2021.

https://github.com/facebookexperimental/MIRAI/blob/41b3c946163df3faf543667b64448bd2abc3357f/documentation/TagAnalysis.md
https://github.com/facebookexperimental/MIRAI/blob/41b3c946163df3faf543667b64448bd2abc3357f/documentation/TagAnalysis.md
https://github.com/facebookexperimental/MIRAI/blob/41b3c946163df3faf543667b64448bd2abc3357f/documentation/TagAnalysis.md
https://github.com/facebookexperimental/MIRAI/blob/41b3c946163df3faf543667b64448bd2abc3357f/documentation/TagAnalysis.md
https://github.com/facebookexperimental/MIRAI/issues/1131#issuecomment-1039643992
https://github.com/facebookexperimental/MIRAI/issues/1131#issuecomment-1039643992
https://github.com/facebookexperimental/MIRAI/issues/1131#issuecomment-1039643992
https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf
https://developer.arm.com/documentation/PRD29-GENC-009492/c?lang=en
https://developer.arm.com/documentation/PRD29-GENC-009492/c?lang=en
https://developer.arm.com/documentation/DEN0096/latest
https://developer.arm.com/documentation/DEN0096/latest
https://developer.arm.com/documentation/den0127/0100/
https://github.com/enarx/enarx
https://github.com/enarx/enarx
https://gramineproject.io
https://gramineproject.io
https://github.com/occlum/occlum/commit/e352a190ea63cc9370371026e9bf620f92b24b41
https://github.com/occlum/occlum/commit/e352a190ea63cc9370371026e9bf620f92b24b41
https://github.com/occlum/occlum/issues/1092
https://github.com/occlum/occlum/issues/1092
https://github.com/onnx/models/blob/main/vision/classification/resnet/model/resnet152-v1-7.onnx
https://github.com/onnx/models/blob/main/vision/classification/resnet/model/resnet152-v1-7.onnx
https://azure.microsoft.com/en-us/products/azure-attestation
https://azure.microsoft.com/en-us/products/azure-attestation
https://cloud.baidu.com/product/springer.html
https://github.com/ya0guang/PoBF

[33] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. Creusot:
a foundry for the deductive verification of rust programs. In Formal
Methods and Software Engineering: 23rd International Conference on
Formal Engineering Methods, ICFEM 2022, Madrid, Spain, October
24–27, 2022, Proceedings, pages 90–105. Springer, 2022.

[34] Dinakar Dhurjati, Sumant Kowshik, Vikram Adve, and Chris Lattner.
Memory safety without runtime checks or garbage collection. In Pro-
ceedings of the 2003 ACM SIGPLAN Conference on Language, Com-
piler, and Tool for Embedded Systems, LCTES ’03, page 69–80, New
York, NY, USA, 2003. Association for Computing Machinery.

[35] Edgeless systems | confidential computing at scale for everyone. https:
//www.edgeless.systems, 2022.

[36] Facebook. Mirai: an abstract interpreter for the rust compiler’s
mid-level intermediate representation. https://github.com/
facebookexperimental/MIRAI, 2022.

[37] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin
Xia, Binyu Zang, and Haibo Chen. Scalable memory protection in the
PENGLAI enclave. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21), 2021.

[38] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. Komodo: Using verification to disentangle secure-enclave
hardware from software. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 287–305, 2017.

[39] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. Komodo: Using verification to disentangle secure-enclave
hardware from software. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 287–305, 2017.

[40] Andrew Ferraiuolo, Razieh Behjati, Tiziano Santoro, and Ben Laurie.
Policy transparency: Authorization logic meets general transparency to
prove software supply chain integrity. 2022.

[41] Fortanix - data-first multicloud security, 2022.

[42] David Goltzsche, Manuel Nieke, Thomas Knauth, and Rüdiger Kapitza.
Acctee: A webassembly-based two-way sandbox for trusted resource
accounting. In Proceedings of the 20th International Middleware
Conference, pages 123–135, 2019.

[43] Confidential computing | google cloud. https://cloud.google.
com/confidential-computing/, 2022.

[44] HEX-Five. Multizone risc-v datasheet. Technical report, HEX-Five,
jan 2020.

[45] Son Ho and Jonathan Protzenko. Aeneas: Rust verification by func-
tional translation. Proceedings of the ACM on Programming Languages,
6(ICFP):711–741, 2022.

[46] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett
Witchel. Ryoan: A distributed sandbox for untrusted computation on
secret data. ACM Transactions on Computer Systems (TOCS), 35(4):1–
32, 2018.

[47] Intel. Attestation for data center orientation guide. https:
//www.intel.com/content/dam/develop/public/us/en/
documents/intel-sgx-dcap-ecdsa-orientation.pdf.

[48] Intel. A cost-effective foundation for end-to-end iot secu-
rity. https://www.intel.com/content/dam/www/public/us/en/
documents/white-papers/intel-epid-white-paper.pdf.

[49] Intel. Intel software guard extensions (sgx) sw develop-
ment guidance for potential bounds check bypass (cve-
2017-5753) side channel explots. https://www.intel.
com/content/dam/develop/external/us/en/documents/
180204-sgx-sdk-developer-guidance-v1-0.pdf.

[50] Intel. Intel® trust domain extensions (intel® tdx). https://cdrdv2.
intel.com/v1/dl/getContent/690419, Aug. 2021.

[51] Intel. Product brief: Intel® software guard extensions.
https://cdrdv2.intel.com/v1/dl/getContent/723693?
explicitVersion=true, Mar. 2022.

[52] Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan, Fraser
Brown, Sorin Lerner, Tyler McMullen, Stefan Savage, and Deian Stefan.
Доверяй, но проверяй: SFI safety for native-compiled Wasm. In
Network and Distributed Systems Security (NDSS) Symposium, 2021.

[53] JRF63. polybench-rs. https://github.com/JRF63/polybench-rs,
2020.

[54] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
Rustbelt: Securing the foundations of the rust programming language.
Proceedings of the ACM on Programming Languages, 2(POPL):1–34,
2017.

[55] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn
Song. Dta++: dynamic taint analysis with targeted control-flow propa-
gation. In NDSS, 2011.

[56] David Kaplan, Jeremy Powell, and Tom Woller. Amd sev-snp: Strength-
ening vm isolationwith integrity protection and more. Technical report,
Technical Report. Advanced Micro Devices Inc., 2020.

[57] Mustakimur Rahman Khandaker, Yueqiang Cheng, Zhi Wang, and Tao
Wei. Coin attacks: On insecurity of enclave untrusted interfaces in
sgx. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 971–985, 2020.

[58] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric
Xing, and Mona Vij. Integrating remote attestation with transport layer
security. arXiv preprint arXiv:1801.05863, 2018.

[59] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn Song, and Krste
Asanović. Keystone: An open framework for architecting tees. arXiv
preprint arXiv:1907.10119, 2019.

[60] Weijie Liu, Wenhao Wang, Hongbo Chen, XiaoFeng Wang, Yaosong
Lu, Kai Chen, Xinyu Wang, Qintao Shen, Yi Chen, and Haixu Tang.
Practical and efficient in-enclave verification of privacy compliance. In
2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 413–425. IEEE, 2021.

[61] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni.
Twine: An embedded trusted runtime for webassembly. In 2021 IEEE
37th International Conference on Data Engineering (ICDE), pages
205–216. IEEE, 2021.

[62] Microsoft. Qspectre. https://learn.microsoft.com/en-us/cpp/
build/reference/qspectre?view=msvc-170.

[63] Introducing azure confidential computing.
https://azure.microsoft.com/en-us/blog/
introducing-azure-confidential-computing, 2022.

[64] Peter Müller, Malte Schwerhoff, and Alexander J Summers. Viper:
A verification infrastructure for permission-based reasoning. In In-
ternational conference on verification, model checking, and abstract
interpretation, pages 41–62. Springer, 2016.

[65] Andrew Myers. Tutorial t1: Expressing and enforcing security with
programming languages, June 2006.

[66] Andrew C Myers. Jflow: Practical mostly-static information flow con-
trol. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 228–241, 1999.

[67] George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak,
and Westley Weimer. Ccured: Type-safe retrofitting of legacy soft-
ware. ACM Transactions on Programming Languages and Systems
(TOPLAS), 27(3):477–526, 2005.

[68] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for
automatic detection, analysis, and signaturegeneration of exploits on
commodity software. In NDSS, volume 5, pages 3–4. Citeseer, 2005.

[69] Hyunyoung Oh, Adil Ahmad, Seonghyun Park, Byoungyoung Lee,
and Yunheung Paek. Trustore: Side-channel resistant storage for sgx
using intel hybrid cpu-fpga. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 1903–
1918, 2020.

https://www.edgeless.systems
https://www.edgeless.systems
https://github.com/facebookexperimental/MIRAI
https://github.com/facebookexperimental/MIRAI
https://cloud.google.com/confidential-computing/
https://cloud.google.com/confidential-computing/
https://www.intel.com/content/dam/develop/public/us/en/documents/intel-sgx-dcap-ecdsa-orientation.pdf
https://www.intel.com/content/dam/develop/public/us/en/documents/intel-sgx-dcap-ecdsa-orientation.pdf
https://www.intel.com/content/dam/develop/public/us/en/documents/intel-sgx-dcap-ecdsa-orientation.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-epid-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-epid-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/180204-sgx-sdk-developer-guidance-v1-0.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/180204-sgx-sdk-developer-guidance-v1-0.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/180204-sgx-sdk-developer-guidance-v1-0.pdf
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/723693?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/723693?explicitVersion=true
https://github.com/JRF63/polybench-rs
https://learn.microsoft.com/en-us/cpp/build/reference/qspectre?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/qspectre?view=msvc-170
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing

[70] Benjamin C Pierce, Arthur Azevedo de Amorim, Chris Casinghino,
Marco Gaboardi, Michael Greenberg, Catalin Hriţcu, Vilhelm Sjöberg,
and Brent Yorgey. Logical foundations. Software Foundations series,
1, 2018.

[71] Louis-Noël Pouchet et al. Polybench: The polyhedral benchmark suite.
URL: http://www. cs. ucla. edu/pouchet/software/polybench, 437:1–1,
2012.

[72] project-oak/oak. https://github.com/project-oak/oak, 2022.

[73] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Crosstalk: Speculative data leaks across cores are real. In
2021 IEEE Symposium on Security and Privacy (SP), pages 1852–1867.
IEEE, 2021.

[74] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang,
Yi Xu, Yubin Xia, and Shoumeng Yan. Occlum: Secure and efficient
multitasking inside a single enclave of intel sgx. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 955–970,
2020.

[75] Shweta Shinde, Shengyi Wang, Pinghai Yuan, Aquinas Hobor, Abhik
Roychoudhury, and Prateek Saxena. Besfs: A posix filesystem for
enclaves with a mechanized safety proof. In Proceedings of the 29th
USENIX Conference on Security Symposium, pages 523–540, 2020.

[76] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. Moat:
Verifying confidentiality of enclave programs. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, CCS ’15, page 1169–1184, New York, NY, USA, 2015. Asso-
ciation for Computing Machinery.

[77] Robert E. Strom and Shaula Yemini. Typestate: A programming lan-
guage concept for enhancing software reliability. IEEE Transactions
on Software Engineering, SE-12(1):157–171, 1986.

[78] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas,
and Sanjit A Seshia. A formal foundation for secure remote execution
of enclaves. In Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pages 2435–2450, 2017.

[79] Apache teaclave (incubating). https://teaclave.apache.org,
2022.

[80] The Rust-Lang Team. Rust port of google’s high-performance swis-
stable hash map. https://github.com/rust-lang/hashbrown,
2023.

[81] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
intel sgx kingdom with transient out-of-order execution. In Proceed-
ings fo the 27th USENIX Security Symposium. USENIX Association,
2018.

[82] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Ma-
rina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss,
and Frank Piessens. Lvi: Hijacking transient execution through mi-
croarchitectural load value injection. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 54–72. IEEE, 2020.

[83] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and
Raoul Strackx. Telling your secrets without page faults: Stealthy page
table-based attacks on enclaved execution. In Proceedings of the 26th
USENIX Security Symposium, pages 1041–1056. USENIX Association,
2017.

[84] Veracruz project – just another linux foundation projects 2 site. https:
//veracruz-project.com, 2022.

[85] Steve Vinoski. Concurrency with erlang. IEEE Internet Computing,
11(5):90–93, 2007.

[86] Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yiming Jing, Ran
Duan, Long Li, Yulong Zhang, Tao Wei, and Zhiqiang Lin. Towards
memory safe enclave programming with rust-sgx. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 2333–2350, 2019.

[87] Pei Wang, Yu Ding, Mingshen Sun, Huibo Wang, Tongxin Li, Rundong
Zhou, Zhaofeng Chen, and Yiming Jing. Building and maintaining a
third-party library supply chain for productive and secure sgx enclave
development. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Prac-
tice, pages 100–109, 2020.

[88] Shuai Wang, Wenhao Wang, Qinkun Bao, Pei Wang, XiaoFeng Wang,
and Dinghao Wu. Binary code retrofitting and hardening using sgx. In
Proceedings of the 2017 Workshop on Forming an Ecosystem Around
Software Transformation, pages 43–49, 2017.

[89] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky
cauldron on the dark land: Understanding memory side-channel hazards
in sgx. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2421–2434, 2017.

[90] Wenhao Wang, Weijie Liu, Hongbo Chen, Xiaofeng Wang, Hongliang
Tian, and Dongdai Lin. Trust beyond border: Lightweight, verifiable
user isolation for protecting in-enclave services. IEEE Transactions on
Dependable and Secure Computing, 2021.

[91] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems.
In 2015 IEEE Symposium on Security and Privacy, pages 640–656.
IEEE, 2015.

[92] Andrew C Yao. Protocols for secure computations. In 23rd annual
symposium on foundations of computer science (sfcs 1982), pages 160–
164. IEEE, 1982.

A Semantics of PoCF

We use e ⇓st
st ′ r to denote that an expression e starting with

a given state st = (me,mo,errs), evaluates to r while result-
ing in an updated state st ′ = (me′,mo′,errs). The typestate
σ is a triplet σ := (TaskState,KeyState,DataState) where
TaskState denotes the state of the Task struct, KeyState de-
notes the state of the session key, and DataState denotes the
state of the confidential data uploaded by the data provider.
The key k and the data d are tuples of tagged values v :=
(v′,vt). We use the notation π := (k,d,σ) to denote the input
and output (wrapped in the result r) of the transition functions
in the PoCF workflow. That is, for a given transition function
f , we have f (π)⇒ r(π′), where “⇒” means “evaluates to”.
The description of the transition functions in the PoCF work-
flow can be found in Table 6 and Figure 3, and the formal
semantics thereof is described in Figure 10.

https://github.com/project-oak/oak
https://teaclave.apache.org
https://github.com/rust-lang/hashbrown
https://veracruz-project.com
https://veracruz-project.com

Table 6: Informal semantics of PoCF state transitions.

Transition Function Semantics Operations and Side Effect
establish_channel(f : Fn()→ Key) Do remote attestation and get the session key task.key= f ()
receive_data(f : Fn()→ Data) Receive encrypted data from an untrusted channel task.data= f ()
decrypt_data() Decrypt the data using the session key task.data= task.data.decrypt(task.key)
do_compute(f : Fn(Data)→ Data) Conduct CC task computation on the decrypted data task.data= f (task.data)
encrypt_result() Encrypt the data using the session key and drop the key task.data= task.data.encrypt(task.key)
take_result()→ Data Take the encrypted result and destruct the task return task.data and drop task

Note that every transition function also takes the Task (i.e., self in Rust) and returns a Task, except for take_result().

Leaked(st)⇒ false f : ()→ str k = (Any,Nonsense) d = (Any,Nonsense) σ =
(Initialized,Uninitialized,Uninitialized)

π = (k,d,σ) {establish_channel(π, f);zerorize(me′)} ⇓st
st ′ r

r = Ok(π′) ⊢ σ′ = (ChannelEstablished,AllowedTwice,Uninitialized),k′ = (str,Secret),d′ = (Any,Nonsense)

Leaked(st)⇒ false f : ()→ str k = (str,Secret) d = (Any,Nonsense) σ =
(ChannelEstablished,AllowedTwice,Uninitialized)

π = (k,d,σ) {receive_data(π, f);zerorize(me′)} ⇓st
st ′ r

r = Ok(π′) ⊢ σ′ = (DataReceived,AllowedTwice,EncryptedInput),k′ = (str,Secret),d′ = (str,NotSecret)

Leaked(st)⇒ false k = (str,Secret) d = (str,NotSecret) σ = (DataReceived,AllowedTwice,EncryptedInput)
π = (k,d,σ) {decrypt_data(π,⊥);zerorize(me′)} ⇓st

st ′ r

r = Ok(π′) ⊢ σ′ = (DataDecrypted,AllowedOnce,DecryptedInput),k′ = (str,Secret),d′ = (str,Secret)

Leaked(st)⇒ false f : str → str k = (str,Secret) d = (str,Secret) σ =
(DataDecrypted,AllowedOnce,DecryptedInput)

π = (k,d,σ) {private_compute(π, f);zerorize(me′)} ⇓st
st ′ r

r = Ok(π′) ⊢ σ′ = (ResultDecrypted,AllowedOnce,DecryptedOutput),k′ = (str,Secret),d′ = (str,Secret)

Leaked(st)⇒ false k = (str,Secret) d = (str,Secret) σ = (DataDecrypted,AllowedOnce,DecryptedOutput)
π = (k,d,σ) {encrypt_result(π,⊥);zerorize(me′)} ⇓st

st ′ r

r = Ok(π) ⊢ σ′ = (ResultEncrypted, Invalid,EncryptedOutput),k′ = (str,NotSecret),d′ = (str,NotSecret)

Leaked(st)⇒ false k = (str,NotSecret) d = (str,NotSecret) σ = (DataEncrypted, Invalid,EncryptedOutput)
π = (k,d,σ) {take_result(π,⊥);zerorize(me′)} ⇓st

st ′ r

r = Ok(π) ⊢ σ′ = (Finished, Invalid, Invalid),k′ = (Any,Nonsense),d′ = (Any,Nonsense)

Figure 10: Formal semantics of PoCF workflow

	Introduction
	Background
	Confidential Computing
	Static Program Analysis for Security

	Threat Model
	Formalizing PoBF
	Modeling the Enclave
	PoBF Concepts
	PoBF Security Constraints
	PoBF Design Guidelines

	PoBF-Compliant Framework
	Overview
	The PoCF Library
	Preventing Privacy Leakage
	Scrubbing Secret Residue

	Implementation and Verification of PoCF
	TEE-agnostic Library
	The PoCF Enclave
	The PoCF Verifier

	Evaluation
	Security Analysis
	Performance Evaluation

	Discussion
	Related Work
	Conclusion
	Semantics of PoCF

